期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Mixed convective heat and mass transfer analysis for peristaltic transport in an asymmetric channel with Soret and Dufour effects 被引量:5
1
作者 F.M.Abbasi A.Alsaedi T.Hayat 《Journal of Central South University》 SCIE EI CAS 2014年第12期4585-4591,共7页
The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective bound... The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number. 展开更多
关键词 peristaltic transport heat and mass transfer Soret and Dufour effects convective boundary conditions
下载PDF
Theoretical Study on the Mass Transfer of Metal Ions in Ion Exchange Process 被引量:1
2
作者 Jia Dongfang, Qiu Ling and Zhou Yabing(Department of Chemistry, Lanzhou University, Lanzhou) 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1989年第1期18-25,共8页
The kinetics of ion exchange between Ca2+, Mg2+, Co(Ⅱ), Cu(Ⅱ),Ni(Ⅱ), Fe(Ⅲ), y3+ or Sm3+ , respectively, in 0.50 mol/L HC1 and H+ on macrorecticular sulfonic ion exchange resin and the kinetics of the same reaction... The kinetics of ion exchange between Ca2+, Mg2+, Co(Ⅱ), Cu(Ⅱ),Ni(Ⅱ), Fe(Ⅲ), y3+ or Sm3+ , respectively, in 0.50 mol/L HC1 and H+ on macrorecticular sulfonic ion exchange resin and the kinetics of the same reactions (M -H exchange) when Mn(Ⅱ) coexisted in resin phase as accelerating ion were studied. The accelerating effect manifested and its rule are consistent with the accelerating effect theory based on the concept concerned with adsorption electrical double layer which has been suggested in a previous paper published. 展开更多
关键词 Ion exchange kinetics Accelerative effect on mass transfer
下载PDF
Ionic liquids in electrocatalysis 被引量:2
3
作者 Gui-Rong Zhang Bastian J.M.Etzold 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期197-205,共9页
The performance of an electrocatalyst, which is needed e.g. for key energy conversion reactions such as hydrogen evolution, oxygen reduction or CO2 reduction, is determined not only by the inherent structure of active... The performance of an electrocatalyst, which is needed e.g. for key energy conversion reactions such as hydrogen evolution, oxygen reduction or CO2 reduction, is determined not only by the inherent structure of active sites but also by the properties of the interfacial structures at catalytic surfaces. Ionic liquids(ILs), as a unique class of metal salts with melting point below 100 ℃, present themselves as ideal modulators for manipulations of the interfacial structures. Due to their excellent properties such as good chemical stability, high ionic conductivity, wide electrochemical windows and tunable solvent properties the performance of electrocatalysts can be substantially improved through ILs. In the current minireview, we highlight the critical role of the IL phase at the microenvironments created by the IL, the liquid electrolyte, catalytic nanoparticles and/or support materials, by detailing the promotional effect of IL in electrocatalysis as reaction media, binders, and surface modifiers. Updated exemplary applications of IL in electrocatalysis are given and moreover, the latest developments of IL modified electrocatalysts following the "Solid Catalyst with Ionic Liquid Layer(SCILL)" concept are presented. 展开更多
关键词 Electrocatalysis Ionic liquid Solid catalyst with ionic liquid layer Ligand effect mass transfer Fuel cell Water electrolysis
下载PDF
Mass transfer between bubbles and the dense phasein gas fluidized beds
4
作者 Hongyong Xie Zhiguo Sun 《Particuology》 SCIE EI CAS CSCD 2014年第5期213-217,共5页
Mass transfer between a bubble and the dense phase in gas fluidized beds of Group A and Group B particles was proposed based on previous experimental results and literature data. The mass transfer coefficient between ... Mass transfer between a bubble and the dense phase in gas fluidized beds of Group A and Group B particles was proposed based on previous experimental results and literature data. The mass transfer coefficient between bubbles and the dense phase was determined by kbe = 0.21 db. A theoretical analysis of the mass transfer coefficient between a bubble and the dense phase using diffusion equations showed that the mass transfer coefficient between a bubble and the dense phase is kbe α εmf√ub/db in both three- and two-dimensional fiuidized beds. An effective diffusion coefficient in gas fluidized beds was introduced and correlated with bubble size as De = 13.3db2.7 for Group A and Group B particles. The mass transfer coefficient kbe can then be expressed as kbe = 0.492εmf√ubdb1.7 for bubbles in a three-dimensional bed and kbe = 0.576εm√ubdb1.7 for bubbles in a two-dimensional bed. 展开更多
关键词 Fluidized bedsBubblesDense phase mass transfer Effective diffusion coefficient
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部