Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with te...Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion.展开更多
An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced w...An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced when aiming to achieve elevated current densities.Herein,we employed a rapid and scalable laser texturing process to craft novel multi-channel porous electrodes.Particularly,the obtained electrodes exhibit the lowest Tafel slope of 79 mV dec^(-1)(HER)and 49 mV dec^(-1)(OER).As anticipated,the alkaline electrolyzer(AEL)cell incorporating multi-channel porous electrodes(NP-LT30)exhibited a remarkable improvement in cell efficiency,with voltage drops(from 2.28 to 1.97 V)exceeding 300 mV under 1 A cm^(-1),compared to conventional perforated Ni plate electrodes.This enhancement mainly stemmed from the employed multi-channel porous structure,facilitating mass transport and bubble dynamics through an innovative convection mode,surpassing the traditional convection mode.Furthermore,the NP-LT30-based AEL cell demonstrated exceptional durability for 300 h under 1.0 A cm^(-2).This study underscores the capability of the novel multi-channel porous electrodes to expedite mass transport in practical AWE applications.展开更多
Triple mass-transport deposits (MTDs) with areas of 625, 494 and 902 km^2, respectively, have been identified on the north slope of the Xisha Trough, northern South China Sea margin. Based on high-resolution seismic...Triple mass-transport deposits (MTDs) with areas of 625, 494 and 902 km^2, respectively, have been identified on the north slope of the Xisha Trough, northern South China Sea margin. Based on high-resolution seismic reflection data and multi-beam bathymetric data, the Quaternary MTDs are characterized by typical geometric shapes and internal structures. Results of slope analysis showed that they are developed in a steep slope ranging from 5° to 35°. The head wall scarps of the MTDs arrived to 50 km in length (from headwall to termination). Their inner structures include well developed basal shear surface, growth faults, stepping lateral scarps, erosion grooves, and frontal thrust deformation. From seismic images, the central deepwater channel system of the Xisha Trough has been filled by interbedded channel-levee deposits and thick MTDs. Therefore, we inferred that the MTDs in the deepwater channel system could be dominated by far-travelled slope failure deposits even though there are local collapses of the trough walls. And then, we drew the two-dimensional process model and three- dimensional structure model diagram af the MTDs. Combined with the regional geological setting and previous studies, we discussed the trigger mechanisms of the triple MTDs.展开更多
The mass transport in a thin layer of non-Newtonian bed mud under surface waves is examined with a two-fluid Stokes boundary layer model. The mud is assumed to be a bi-viscous fluid, which tends to resist motion for s...The mass transport in a thin layer of non-Newtonian bed mud under surface waves is examined with a two-fluid Stokes boundary layer model. The mud is assumed to be a bi-viscous fluid, which tends to resist motion for small-applied stresses, but flows readily when the yield stress is exceeded. Asymptotic expansions suitable for shallow fluid layers are applied, and the second-order solutions for the mass transport induced by surface progressive waves are obtained numerically. It is found that the stronger the non-Newtonian behavior of the mud, the more pronounced intermittency of the flow. Consequently, the mass transport velocity is diminished in magnitude, and can even become negative (i.e., opposite to wave propagation) for a certain range of yield stress.展开更多
In order to understand the mass transport and the dynamic genesis associated with a compressible vortex formation,a dynamic analysis of compressible vortex rings (CVRs) generated by shock tubes by using the framework ...In order to understand the mass transport and the dynamic genesis associated with a compressible vortex formation,a dynamic analysis of compressible vortex rings (CVRs) generated by shock tubes by using the framework of Lagrangiancoherent structures (LCSs) and finite-time Lyapunov exponents field (FTLE) is performed. Numerical calculation is performed to simulate the evolution of CVRs generated by shock tubes with 70 mm, 100 mm, and 165 mm of the driver sectionat the circumstances of pressure ratio = 3. The formation of CVRs is studied according to FTLE fields. The mass transportduring the formation is obviously seen by the material manifold reveled by FTLE fields. A non-universal formation numberfor the three CVRs is obtained. Then the elliptic LCSs is implemented on three CVRs. Fluid particles separated by ellipticLCSs and ridges of FTLE are traced back to t = 0 to identify the fluid that eventually forms the CVRs. The elliptic LCSsencompass around 60% fluid material of the advected bulk but contain the majority of the circulation of the ring. The otherparts of the ring carrying almost zero circulation advect along with the ring. Combining the ridges of FTLE and the ellipticLCS, the whole CVR can be divided into three distinct dynamic parts: vortex part, entrainment part, and advected part. Inaddition, a criterion based on the vortex part formation is suggested to identify the formation number of CVRs.展开更多
Some observational characteristics of residual current and mass transport in the Hangzhou Bay and the Changjiang Estuary in winter are analyzed. The residual current and its impact on mass transport are simulated with...Some observational characteristics of residual current and mass transport in the Hangzhou Bay and the Changjiang Estuary in winter are analyzed. The residual current and its impact on mass transport are simulated with a 3 - D joint model for the Hangzhou Bay and the Changjiang Estuary, in which the impacts of river flux, wind, baroclinic pressure gradient (BPG), background current in the East China Sea and tide (including M2, S2, K1 and O1) are taken into account. Based on there studies, further simulations are made to analyze the dynamical mechanisms of the observational characteristics.展开更多
Cryopreservation of cells and tissues (natural or engineered) usually involves complicated protocols for addition and later removal of cryoprotecting agents to avoid osmotic shock and toxicity to cells. The rate of CP...Cryopreservation of cells and tissues (natural or engineered) usually involves complicated protocols for addition and later removal of cryoprotecting agents to avoid osmotic shock and toxicity to cells. The rate of CPA addition and removal is essential to cell survival. In this study, the feasibility of using porous membrane to control the rate of CPA transfer to cell environment is studied, A purpose designed diffusion chamber was fabricated. The effects of membrane characteristics (porosity and effective thickness), temperature, and initial concentration were experimentally studied. A simplified mathematical model was developed, which provides the basis to desire the membrane parameters based on tile experimental measurements.展开更多
Mass transport of Y(dpm)2 Ba(dpm)5· OH· 2Ho and Cu (dpm)2 by a carrier gas(argon) was theoretically considered and experimentally studied as a function of the system with operating parameters including tempe...Mass transport of Y(dpm)2 Ba(dpm)5· OH· 2Ho and Cu (dpm)2 by a carrier gas(argon) was theoretically considered and experimentally studied as a function of the system with operating parameters including temperature, carrier gas flow rate and system pressure. The experimental results are in a good agreement with the theoretical prediction. The mechanism of mass transport of these organometallic precursors and their use for YBCO film stoichiometry control and reproducibility are discussed.展开更多
A mass transport model was developed to predict the transport rate of ions within biofilms, which was experimentally verified using the fluxes of NH4^+ and Ca^2+ through the heterotrophic biofilms with the thickness...A mass transport model was developed to predict the transport rate of ions within biofilms, which was experimentally verified using the fluxes of NH4^+ and Ca^2+ through the heterotrophic biofilms with the thickness varying from 230 to 1430μm under the effect of external field in the range of-20 V/m to 60 V/m. It is found that the result predicted by the model is in agreement with the experimentally obtained one, with the error less than 5 percent for the thin biofilms. The error increases with the increase of the biofilm thickness. The transport rate of ions caused by electric migration is affected by the charges, field strength, and biofilm thickness and so on.展开更多
Dynamic behaviors on polyacrylic acid (PAA) gels and mass (small molecules) transports in the gels have been studied mainly by dynamic light scattering (DLS). The cross-linking degree (fc), monomer concentration (Cm)...Dynamic behaviors on polyacrylic acid (PAA) gels and mass (small molecules) transports in the gels have been studied mainly by dynamic light scattering (DLS). The cross-linking degree (fc), monomer concentration (Cm) and temperature of the gels have significant influences on its dynamic behavior and mass transport in the gels. The increase of fc leads to decrease of the mesh sizes of the gels, thus the obstacle of the gels for mass transport is increased. As a result, small molecular diffusion Dk in the gels is decreased. So even if for small molecules, the Dk also is influenced.展开更多
A three-porous-medium model for transvascular exchange and extravascular transport of fluid and macromolecules in a spherical solid tumor is developed. The microvasculature , lymphatics, and tissue space are each trea...A three-porous-medium model for transvascular exchange and extravascular transport of fluid and macromolecules in a spherical solid tumor is developed. The microvasculature , lymphatics, and tissue space are each treated as a porous medium with the flow of blood. lymph, and interstitial fluid obeying Darcy's law and Starling 's assumption. In this part, the role of interstitial pressure and fluid convection are studited. The analytical soiutions are obtained for foe isolated tumor and the normal-tissue-surrounded tumor respectively. The calculated interstitial pressure profue are consistent with the experimental observation that the elevated interstitial pressure is a major barrier in the penetration of macromolecular drug into tumors. The factors which may reduce the interstitial pressure are analyzed in details.展开更多
To quantitatively investigate the water mass transport of mesoscale eddies,the mass transport induced by a simulated anticyclonic eddy in the South China Sea was evaluated by using the Regional Ocean Modelling System(...To quantitatively investigate the water mass transport of mesoscale eddies,the mass transport induced by a simulated anticyclonic eddy in the South China Sea was evaluated by using the Regional Ocean Modelling System(ROMS)and a built-in passive tracer module.The results indicate that the eddy can trap and transport 51%of the initial water in the eddy core to 689 km from its origin during its lifetime of 100 days,with a stable loss rate of 6‰per day.During propagation,there is drastic horizontal water exchange between the inside and outside of the eddy.Meanwhile,the vertical mass transport is signifi cant,and 65%of the water initially in the mixed layer of the eddy is eventually detrained into the subsurface.A tracer budget analysis of eddy shows that advection is the dominant dynamic process of transport,while the eff ect of mixing is weak,and horizontal process plays a controlling role.Horizontal and vertical advection exhibit opposite patterns and strongly off set each other.Particularly,a distinct dipole pattern is found in the local velocity fi eld of the eddy,with signifi cant convergence(downwelling)and divergence(upwelling)zones in the anterior and posterior of the eddy,respectively,which is likely related to the driving mechanism of the westward propagation of the eddy.The dipole further induces a vertical overturning cell,through which the surface water in the anterior of the eddy detrains into the subsurface by downwelling and resurface from the posterior of the eddy by upwelling and gradually spreads out of the eddy.The temporal variability in the tracer budget is signifi cant,in which horizontal advection is dominant.The propagation acceleration and temporal derivative of the deformation rate are highly correlated with tracer transport,suggesting the potential eff ect of the temporal instability of eddies on the eddy mass transport.展开更多
In the electrochemical conversion of carbon dioxide, high currents need to be employed to obtain large production rates, thus implying that mass transport of reactants and products is of crucial importance.This aspect...In the electrochemical conversion of carbon dioxide, high currents need to be employed to obtain large production rates, thus implying that mass transport of reactants and products is of crucial importance.This aspect can be investigated by employing a model that depicts the local environment for the reduction reactions. Simultaneously, electrochemical impedance spectroscopy, despite being a versatile technique, has rarely been adopted for studying the mass transport features during the carbon dioxide(CO_(2))electroreduction. In this work, this aspect is deeply analyzed by correlating the results of impedance spectroscopy characterization with those obtained by a bubble-induced mass transport modeling under controlled diffusion conditions on a gold rotating disk electrode. The effects of potential and rotation rate on the local environment are also clarified. In particular, it has been found that CO_(2) depletion occurs at high kinetics when the rotation is absent, giving rise to an increment of the competing hydrogen evolution reaction. This feature reflects in an enlargement of the diffusion resistance, which overcomes the charge transport one.展开更多
Aerosols represent an important source of terrestrial organic carbon(OC)from the East Asian continent to the China marginal seas,thus their provenance and transport play important roles in the global carbon cycle.Fift...Aerosols represent an important source of terrestrial organic carbon(OC)from the East Asian continent to the China marginal seas,thus their provenance and transport play important roles in the global carbon cycle.Fifty samples of total suspended particle were collected seasonally from the nearshore Huaniao Island(HNI)in East China Sea(ECS)from April 2018 to January 2019;and they were analyzed for total organic carbon(TOC)content and stable carbon isotope(δ^(13)C),as well as terrestrial bio-markers including n-alkanes(C_(20)-C_(33)),n-alkanols(C_(20)-C32)and n-fatty acids(n-FAs,C_(20)-C30),to distinguish the seasonal variabili-ties of terrestrial OC sources and reveal the influence of the long-range air mass transport on these sources.The TOC-δ^(13)C values(range from−27.3‰to−24.3‰)and molecular distributions of terrestrial biomarkers both suggested that terrestrial OC contribu-tions to aerosols had significant seasonal variations.The source indices of terrestrial biomarkers(e.g.,Fossil%=82.8%for n-alkanes)revealed that the fossil fuel OC contributions,including coal burning and vehicular emission,were higher in winter,mainly because of the long-range air mass transport from the north of the East Asian continent.The terrestrial plant OC contributions were higher in summer(e.g.,Wax%=32.4%for n-alkanes),likely due to local vegetation sources from HNI and East Asian continental air masses.Cluster analysis of air mass backward-trajectories clearly showed that transport pathway plays an important role in determining the organic constituents of aerosols in China marginal seas.A comparison of these terrestrial OC contributions from different air mass origins suggested that fossil fuel OC showed less variations among various air mass origins from northern China in winter,while terrestrial plant OC sources from northern and southern China in summer contributed more than that from the air masses transported through the ECS.These results provided a basis for future quantification of terrestrial OC from different origins in marine aerosols,by combining biomarker index and carbon isotopes.展开更多
The conventional classification of electrolyte solutions as“strong”or“weak”accounts for their charge transport properties,but neglects their mass transport properties,and is not readily applicable to highly concen...The conventional classification of electrolyte solutions as“strong”or“weak”accounts for their charge transport properties,but neglects their mass transport properties,and is not readily applicable to highly concentrated solutions.Here,we use the Onsager transport formalism in combination with linear response theory to attain a more general classification taking into account both charge and mass transport properties.To this end,we define a molar mass transport coefficientΛ_(mass),which is related to equilibrium center-of-mass fluctuations of the mobile ions and which is the masstransport analogue of the molar ionic conductivityΛ_(charge).Three classes of electrolyte solution are then distinguished:(i)“Strong electrolytes”with 4Λ_(mass)≈Λ_(charge);(ii)“weak charge transport electrolytes”withΛ_(charge)≪4Λ_(mass);and(iii)“weak mass transport electrolytes”with 4Λ_(mass)≪Λ_(charge).While classes(i)and(ii)encompass the classical“strong”and“weak”electrolytes,respectively,many highly concentrated electrolytes fall into class(iii)and thus exhibit transport properties clearly distinct from classical strong and weak electrolytes.展开更多
Using non-equilibrium molecular dynamics and the Monte Carlo method, we simulated mass transport in a onedimensional channel with dynamic external potentials. This study focuses on the influence of the dynamic externa...Using non-equilibrium molecular dynamics and the Monte Carlo method, we simulated mass transport in a onedimensional channel with dynamic external potentials. This study focuses on the influence of the dynamic external potential field on the mass transport. Traveling wave and standing wave potential fields have been employed as our dynamic potential field. We found that mass transport can be promoted by the traveling wave field when the external potential moves along the direction of the mass current. When the standing wave field is exerted on the channel, the channel is found to work like a switch. The mass current can be "on" or "off" by adjusting the standing wave frequency. The effects of the period number,the amplitude and the velocity of the external potential on the mass transport are also discussed. Our research provides valuable advice for the control o particle transport through one-dimensional channels.展开更多
In this paper, we focus on the theoretical and numerical aspects of network problems. For an illustration, we consider the urban traffic problems. And our effort is concentrated on the numerical questions to locate th...In this paper, we focus on the theoretical and numerical aspects of network problems. For an illustration, we consider the urban traffic problems. And our effort is concentrated on the numerical questions to locate the optimal network in a given domain (for example a town). Mainly, our aim is to find the network so as the distance between the population position and the network is minimized. Another problem that we are interested is to give an numerical approach of the Monge and Kantorovitch problems. In the literature, many formulations (see for example [1-4]) have not yet practical applications which deal with the permutation of points. Let us mention interesting numerical works due to E. Oudet begun since at least in 2002. He used genetic algorithms to identify optimal network (see [5]). In this paper we introduce a new reformulation of the problem by introducing permutations . And some examples, based on realistic scenarios, are solved.展开更多
Hydrological and LADCP data from four experiments at sea (Semane 1999, 2000/1 2000/3, 2001) are used to describe the structure and circulation of Mediterranean Water in the Gulf of Cadiz. These data were gathered on m...Hydrological and LADCP data from four experiments at sea (Semane 1999, 2000/1 2000/3, 2001) are used to describe the structure and circulation of Mediterranean Water in the Gulf of Cadiz. These data were gathered on meridional sections along 8?20′W and 6?15′W and between these longitudes on a zonal section along 35?50′N. The mesoscale and the submesoscale structures (Mediterranean Water Undercurrents, meddies, cyclones) observed along these sections are characterized in terms of thermohaline properties and of velocity. The transports of mass and salt in each class of density (North Atlantic Central Water, Mediterranean Water, North Atlantic Deep Water) are computed with an inverse model. The model indicates a general eastward flux in the Central Water layer, and a westward flux in the Mediterranean Water layer, but there is also a horizontal recirculation and entrainment in these two layers, as well as strong transports associated with the meddy and cyclone found during Semane 1999.展开更多
The Asian monsoon(AM) region is a well-known region with prevailing stratosphere–troposphere exchange(STE).However,how the STE across this region changes with the weakening AM remains unclear.Here,we particularly dia...The Asian monsoon(AM) region is a well-known region with prevailing stratosphere–troposphere exchange(STE).However,how the STE across this region changes with the weakening AM remains unclear.Here,we particularly diagnose the air mass transport between the planetary boundary layer(PBL) and the stratosphere over the AM region during 1992–2017 using the Lagrangian particle dispersion model FLEXPART based on the ERA-Interim reanalysis data.The results show that both the downward and upward deep STEs exhibit a detectable increasing trend,while the latter,namely,the deep troposphere-to-stratosphere transport(DTST),is relatively more significant.Further analysis reveals that the long-term trend of DTST over the AM region could be partly attributed to changes in the Pacific Walker circulation and the air temperature(especially at upper levels).Additionally,it is found that DTST increases markedly over the tropical oceanic regions,while the increasing DTST into the stratosphere can be attributed to the enhanced air masses originated from the PBL over the terrestrial regions,where large amounts of pollutant emissions occur.The results imply that the influence of the DTST on the chemical composition and the climate of the stratosphere over the AM region is expected to become increasingly important,and is thereby of relevance to climate projection in an evolving climate.展开更多
基金Project supported by the Doctoral Fund of Yanshan University (Grant No.B919)the Program of Independent Research for Young Teachers of Yanshan University (Grant No.020000534)the S&T Program of Hebei Province of China (Grant No.QN2016123)。
文摘Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion.
基金financial support from the National Key R&D Program(2023YFE0108000)the Academy of Sciences Project of Guangdong Province(2019GDASYL-0102007,2021GDASYL-20210103063)+1 种基金GDAS’Project of Science and Technology Development(2022GDASZH-2022010203-003)financial support from the China Scholarship Council(202108210128)。
文摘An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced when aiming to achieve elevated current densities.Herein,we employed a rapid and scalable laser texturing process to craft novel multi-channel porous electrodes.Particularly,the obtained electrodes exhibit the lowest Tafel slope of 79 mV dec^(-1)(HER)and 49 mV dec^(-1)(OER).As anticipated,the alkaline electrolyzer(AEL)cell incorporating multi-channel porous electrodes(NP-LT30)exhibited a remarkable improvement in cell efficiency,with voltage drops(from 2.28 to 1.97 V)exceeding 300 mV under 1 A cm^(-1),compared to conventional perforated Ni plate electrodes.This enhancement mainly stemmed from the employed multi-channel porous structure,facilitating mass transport and bubble dynamics through an innovative convection mode,surpassing the traditional convection mode.Furthermore,the NP-LT30-based AEL cell demonstrated exceptional durability for 300 h under 1.0 A cm^(-2).This study underscores the capability of the novel multi-channel porous electrodes to expedite mass transport in practical AWE applications.
基金The National Natural Science Foundation of China under contract Nos 41306057 and 40906028the Open Fund of the Key Laboratory of Submarine Geosciences,State Oceanic Administration under contract No.KLSG1406
文摘Triple mass-transport deposits (MTDs) with areas of 625, 494 and 902 km^2, respectively, have been identified on the north slope of the Xisha Trough, northern South China Sea margin. Based on high-resolution seismic reflection data and multi-beam bathymetric data, the Quaternary MTDs are characterized by typical geometric shapes and internal structures. Results of slope analysis showed that they are developed in a steep slope ranging from 5° to 35°. The head wall scarps of the MTDs arrived to 50 km in length (from headwall to termination). Their inner structures include well developed basal shear surface, growth faults, stepping lateral scarps, erosion grooves, and frontal thrust deformation. From seismic images, the central deepwater channel system of the Xisha Trough has been filled by interbedded channel-levee deposits and thick MTDs. Therefore, we inferred that the MTDs in the deepwater channel system could be dominated by far-travelled slope failure deposits even though there are local collapses of the trough walls. And then, we drew the two-dimensional process model and three- dimensional structure model diagram af the MTDs. Combined with the regional geological setting and previous studies, we discussed the trigger mechanisms of the triple MTDs.
基金The work was supported by CRCG Research Grant 10203302 awarded by the University of Hong Kong,and Grants HKU 7117/99E and HKU 7081/02E awarded by the Research Grants Council of the Hong Kong Special Administrative Region
文摘The mass transport in a thin layer of non-Newtonian bed mud under surface waves is examined with a two-fluid Stokes boundary layer model. The mud is assumed to be a bi-viscous fluid, which tends to resist motion for small-applied stresses, but flows readily when the yield stress is exceeded. Asymptotic expansions suitable for shallow fluid layers are applied, and the second-order solutions for the mass transport induced by surface progressive waves are obtained numerically. It is found that the stronger the non-Newtonian behavior of the mud, the more pronounced intermittency of the flow. Consequently, the mass transport velocity is diminished in magnitude, and can even become negative (i.e., opposite to wave propagation) for a certain range of yield stress.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91441205 and 91941301)China Postdoctoral Science Foundation(Grant No.2018M642007).
文摘In order to understand the mass transport and the dynamic genesis associated with a compressible vortex formation,a dynamic analysis of compressible vortex rings (CVRs) generated by shock tubes by using the framework of Lagrangiancoherent structures (LCSs) and finite-time Lyapunov exponents field (FTLE) is performed. Numerical calculation is performed to simulate the evolution of CVRs generated by shock tubes with 70 mm, 100 mm, and 165 mm of the driver sectionat the circumstances of pressure ratio = 3. The formation of CVRs is studied according to FTLE fields. The mass transportduring the formation is obviously seen by the material manifold reveled by FTLE fields. A non-universal formation numberfor the three CVRs is obtained. Then the elliptic LCSs is implemented on three CVRs. Fluid particles separated by ellipticLCSs and ridges of FTLE are traced back to t = 0 to identify the fluid that eventually forms the CVRs. The elliptic LCSsencompass around 60% fluid material of the advected bulk but contain the majority of the circulation of the ring. The otherparts of the ring carrying almost zero circulation advect along with the ring. Combining the ridges of FTLE and the ellipticLCS, the whole CVR can be divided into three distinct dynamic parts: vortex part, entrainment part, and advected part. Inaddition, a criterion based on the vortex part formation is suggested to identify the formation number of CVRs.
基金the Major Stste Basic Research Program Under contract Grand No. G1999043803, theNational Natural Science Foundation of China u
文摘Some observational characteristics of residual current and mass transport in the Hangzhou Bay and the Changjiang Estuary in winter are analyzed. The residual current and its impact on mass transport are simulated with a 3 - D joint model for the Hangzhou Bay and the Changjiang Estuary, in which the impacts of river flux, wind, baroclinic pressure gradient (BPG), background current in the East China Sea and tide (including M2, S2, K1 and O1) are taken into account. Based on there studies, further simulations are made to analyze the dynamical mechanisms of the observational characteristics.
文摘Cryopreservation of cells and tissues (natural or engineered) usually involves complicated protocols for addition and later removal of cryoprotecting agents to avoid osmotic shock and toxicity to cells. The rate of CPA addition and removal is essential to cell survival. In this study, the feasibility of using porous membrane to control the rate of CPA transfer to cell environment is studied, A purpose designed diffusion chamber was fabricated. The effects of membrane characteristics (porosity and effective thickness), temperature, and initial concentration were experimentally studied. A simplified mathematical model was developed, which provides the basis to desire the membrane parameters based on tile experimental measurements.
文摘Mass transport of Y(dpm)2 Ba(dpm)5· OH· 2Ho and Cu (dpm)2 by a carrier gas(argon) was theoretically considered and experimentally studied as a function of the system with operating parameters including temperature, carrier gas flow rate and system pressure. The experimental results are in a good agreement with the theoretical prediction. The mechanism of mass transport of these organometallic precursors and their use for YBCO film stoichiometry control and reproducibility are discussed.
基金The National Natural Science Foundation of China (No. 40506028 30270258) the Encouraging Foundation for Outstanding YouthScientists of Shandong Province (No. 03BS120) and the China Postdoctoral Science Foundation (No. 2005037237)
文摘A mass transport model was developed to predict the transport rate of ions within biofilms, which was experimentally verified using the fluxes of NH4^+ and Ca^2+ through the heterotrophic biofilms with the thickness varying from 230 to 1430μm under the effect of external field in the range of-20 V/m to 60 V/m. It is found that the result predicted by the model is in agreement with the experimentally obtained one, with the error less than 5 percent for the thin biofilms. The error increases with the increase of the biofilm thickness. The transport rate of ions caused by electric migration is affected by the charges, field strength, and biofilm thickness and so on.
基金Project 29774011 was supported by the National Natural Science Foundation of China.
文摘Dynamic behaviors on polyacrylic acid (PAA) gels and mass (small molecules) transports in the gels have been studied mainly by dynamic light scattering (DLS). The cross-linking degree (fc), monomer concentration (Cm) and temperature of the gels have significant influences on its dynamic behavior and mass transport in the gels. The increase of fc leads to decrease of the mesh sizes of the gels, thus the obstacle of the gels for mass transport is increased. As a result, small molecular diffusion Dk in the gels is decreased. So even if for small molecules, the Dk also is influenced.
文摘A three-porous-medium model for transvascular exchange and extravascular transport of fluid and macromolecules in a spherical solid tumor is developed. The microvasculature , lymphatics, and tissue space are each treated as a porous medium with the flow of blood. lymph, and interstitial fluid obeying Darcy's law and Starling 's assumption. In this part, the role of interstitial pressure and fluid convection are studited. The analytical soiutions are obtained for foe isolated tumor and the normal-tissue-surrounded tumor respectively. The calculated interstitial pressure profue are consistent with the experimental observation that the elevated interstitial pressure is a major barrier in the penetration of macromolecular drug into tumors. The factors which may reduce the interstitial pressure are analyzed in details.
基金Supported by the National Key R&D Program of China(No.2016YFC0301203)the National Natural Science Foundation of China(No.41676009)the State Key Program of National Natural Science of China(No.41730534)。
文摘To quantitatively investigate the water mass transport of mesoscale eddies,the mass transport induced by a simulated anticyclonic eddy in the South China Sea was evaluated by using the Regional Ocean Modelling System(ROMS)and a built-in passive tracer module.The results indicate that the eddy can trap and transport 51%of the initial water in the eddy core to 689 km from its origin during its lifetime of 100 days,with a stable loss rate of 6‰per day.During propagation,there is drastic horizontal water exchange between the inside and outside of the eddy.Meanwhile,the vertical mass transport is signifi cant,and 65%of the water initially in the mixed layer of the eddy is eventually detrained into the subsurface.A tracer budget analysis of eddy shows that advection is the dominant dynamic process of transport,while the eff ect of mixing is weak,and horizontal process plays a controlling role.Horizontal and vertical advection exhibit opposite patterns and strongly off set each other.Particularly,a distinct dipole pattern is found in the local velocity fi eld of the eddy,with signifi cant convergence(downwelling)and divergence(upwelling)zones in the anterior and posterior of the eddy,respectively,which is likely related to the driving mechanism of the westward propagation of the eddy.The dipole further induces a vertical overturning cell,through which the surface water in the anterior of the eddy detrains into the subsurface by downwelling and resurface from the posterior of the eddy by upwelling and gradually spreads out of the eddy.The temporal variability in the tracer budget is signifi cant,in which horizontal advection is dominant.The propagation acceleration and temporal derivative of the deformation rate are highly correlated with tracer transport,suggesting the potential eff ect of the temporal instability of eddies on the eddy mass transport.
文摘In the electrochemical conversion of carbon dioxide, high currents need to be employed to obtain large production rates, thus implying that mass transport of reactants and products is of crucial importance.This aspect can be investigated by employing a model that depicts the local environment for the reduction reactions. Simultaneously, electrochemical impedance spectroscopy, despite being a versatile technique, has rarely been adopted for studying the mass transport features during the carbon dioxide(CO_(2))electroreduction. In this work, this aspect is deeply analyzed by correlating the results of impedance spectroscopy characterization with those obtained by a bubble-induced mass transport modeling under controlled diffusion conditions on a gold rotating disk electrode. The effects of potential and rotation rate on the local environment are also clarified. In particular, it has been found that CO_(2) depletion occurs at high kinetics when the rotation is absent, giving rise to an increment of the competing hydrogen evolution reaction. This feature reflects in an enlargement of the diffusion resistance, which overcomes the charge transport one.
基金This study was supported by the National Natural Science Foundation of China(No.U1706219).This is MCTL(Key Laboratory of Marine Chemistry Theory and Technology)contribution#237.
文摘Aerosols represent an important source of terrestrial organic carbon(OC)from the East Asian continent to the China marginal seas,thus their provenance and transport play important roles in the global carbon cycle.Fifty samples of total suspended particle were collected seasonally from the nearshore Huaniao Island(HNI)in East China Sea(ECS)from April 2018 to January 2019;and they were analyzed for total organic carbon(TOC)content and stable carbon isotope(δ^(13)C),as well as terrestrial bio-markers including n-alkanes(C_(20)-C_(33)),n-alkanols(C_(20)-C32)and n-fatty acids(n-FAs,C_(20)-C30),to distinguish the seasonal variabili-ties of terrestrial OC sources and reveal the influence of the long-range air mass transport on these sources.The TOC-δ^(13)C values(range from−27.3‰to−24.3‰)and molecular distributions of terrestrial biomarkers both suggested that terrestrial OC contribu-tions to aerosols had significant seasonal variations.The source indices of terrestrial biomarkers(e.g.,Fossil%=82.8%for n-alkanes)revealed that the fossil fuel OC contributions,including coal burning and vehicular emission,were higher in winter,mainly because of the long-range air mass transport from the north of the East Asian continent.The terrestrial plant OC contributions were higher in summer(e.g.,Wax%=32.4%for n-alkanes),likely due to local vegetation sources from HNI and East Asian continental air masses.Cluster analysis of air mass backward-trajectories clearly showed that transport pathway plays an important role in determining the organic constituents of aerosols in China marginal seas.A comparison of these terrestrial OC contributions from different air mass origins suggested that fossil fuel OC showed less variations among various air mass origins from northern China in winter,while terrestrial plant OC sources from northern and southern China in summer contributed more than that from the air masses transported through the ECS.These results provided a basis for future quantification of terrestrial OC from different origins in marine aerosols,by combining biomarker index and carbon isotopes.
基金the Federal State of Hessen(Germany)for financial support of this work。
文摘The conventional classification of electrolyte solutions as“strong”or“weak”accounts for their charge transport properties,but neglects their mass transport properties,and is not readily applicable to highly concentrated solutions.Here,we use the Onsager transport formalism in combination with linear response theory to attain a more general classification taking into account both charge and mass transport properties.To this end,we define a molar mass transport coefficientΛ_(mass),which is related to equilibrium center-of-mass fluctuations of the mobile ions and which is the masstransport analogue of the molar ionic conductivityΛ_(charge).Three classes of electrolyte solution are then distinguished:(i)“Strong electrolytes”with 4Λ_(mass)≈Λ_(charge);(ii)“weak charge transport electrolytes”withΛ_(charge)≪4Λ_(mass);and(iii)“weak mass transport electrolytes”with 4Λ_(mass)≪Λ_(charge).While classes(i)and(ii)encompass the classical“strong”and“weak”electrolytes,respectively,many highly concentrated electrolytes fall into class(iii)and thus exhibit transport properties clearly distinct from classical strong and weak electrolytes.
基金Project supported by the Natural Science Foundation of Guangdong Province,China(Grant No.2014A030313367)
文摘Using non-equilibrium molecular dynamics and the Monte Carlo method, we simulated mass transport in a onedimensional channel with dynamic external potentials. This study focuses on the influence of the dynamic external potential field on the mass transport. Traveling wave and standing wave potential fields have been employed as our dynamic potential field. We found that mass transport can be promoted by the traveling wave field when the external potential moves along the direction of the mass current. When the standing wave field is exerted on the channel, the channel is found to work like a switch. The mass current can be "on" or "off" by adjusting the standing wave frequency. The effects of the period number,the amplitude and the velocity of the external potential on the mass transport are also discussed. Our research provides valuable advice for the control o particle transport through one-dimensional channels.
文摘In this paper, we focus on the theoretical and numerical aspects of network problems. For an illustration, we consider the urban traffic problems. And our effort is concentrated on the numerical questions to locate the optimal network in a given domain (for example a town). Mainly, our aim is to find the network so as the distance between the population position and the network is minimized. Another problem that we are interested is to give an numerical approach of the Monge and Kantorovitch problems. In the literature, many formulations (see for example [1-4]) have not yet practical applications which deal with the permutation of points. Let us mention interesting numerical works due to E. Oudet begun since at least in 2002. He used genetic algorithms to identify optimal network (see [5]). In this paper we introduce a new reformulation of the problem by introducing permutations . And some examples, based on realistic scenarios, are solved.
文摘Hydrological and LADCP data from four experiments at sea (Semane 1999, 2000/1 2000/3, 2001) are used to describe the structure and circulation of Mediterranean Water in the Gulf of Cadiz. These data were gathered on meridional sections along 8?20′W and 6?15′W and between these longitudes on a zonal section along 35?50′N. The mesoscale and the submesoscale structures (Mediterranean Water Undercurrents, meddies, cyclones) observed along these sections are characterized in terms of thermohaline properties and of velocity. The transports of mass and salt in each class of density (North Atlantic Central Water, Mediterranean Water, North Atlantic Deep Water) are computed with an inverse model. The model indicates a general eastward flux in the Central Water layer, and a westward flux in the Mediterranean Water layer, but there is also a horizontal recirculation and entrainment in these two layers, as well as strong transports associated with the meddy and cyclone found during Semane 1999.
基金Supported by the National Key Research and Development Program of China (2023YFC3010700)Second Tibetan Plateau Comprehensive Scientific Expedition and Research Program (2019QZKK0105)Science and Technology Development Fund of Chinese Academy of Meteorological Sciences (2023KJ027 and 2024KJ012)。
文摘The Asian monsoon(AM) region is a well-known region with prevailing stratosphere–troposphere exchange(STE).However,how the STE across this region changes with the weakening AM remains unclear.Here,we particularly diagnose the air mass transport between the planetary boundary layer(PBL) and the stratosphere over the AM region during 1992–2017 using the Lagrangian particle dispersion model FLEXPART based on the ERA-Interim reanalysis data.The results show that both the downward and upward deep STEs exhibit a detectable increasing trend,while the latter,namely,the deep troposphere-to-stratosphere transport(DTST),is relatively more significant.Further analysis reveals that the long-term trend of DTST over the AM region could be partly attributed to changes in the Pacific Walker circulation and the air temperature(especially at upper levels).Additionally,it is found that DTST increases markedly over the tropical oceanic regions,while the increasing DTST into the stratosphere can be attributed to the enhanced air masses originated from the PBL over the terrestrial regions,where large amounts of pollutant emissions occur.The results imply that the influence of the DTST on the chemical composition and the climate of the stratosphere over the AM region is expected to become increasingly important,and is thereby of relevance to climate projection in an evolving climate.