BACKGROUND Li-Fraumeni syndrome(LFS)is a rare autosomal dominant cancer-predisposing syndrome,which can manifest as a polymorphic spectrum of malignancies.LFS is associated with an early onset in life,with the majorit...BACKGROUND Li-Fraumeni syndrome(LFS)is a rare autosomal dominant cancer-predisposing syndrome,which can manifest as a polymorphic spectrum of malignancies.LFS is associated with an early onset in life,with the majority of cases occurring prior to the age of 46.Notwithstanding the infrequency of primary cardiac tumors,it behooves clinicians to remain vigilant in considering the differential diagnosis of such tumors in LFS patients who present with a cardiac mass.This is due to the markedly elevated risk for malignancy in this particular population,far surpassing that of the general populace.CASE SUMMARY Herein,we present a case of a 30-year-old female with LFS who was found to have a tricuspid valve leaflet mass.CONCLUSION This case exemplifies valuable learning points in the diagnostic approach for this exceptionally rare patient population.展开更多
Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines...Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.展开更多
As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accura...As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.展开更多
BACKGROUND Cesarean hemorrhage is one of the serious complications,and short-term massive blood transfusion can easily cause postoperative infection and physical stress response.However,predictive nursing intervention...BACKGROUND Cesarean hemorrhage is one of the serious complications,and short-term massive blood transfusion can easily cause postoperative infection and physical stress response.However,predictive nursing intervention has important clinical significance for it.AIM To explore the effect of predictive nursing intervention on the stress response and complications of women undergoing short-term mass blood transfusion during cesarean section(CS).METHODS A clinical medical record of 100 pregnant women undergoing rapid mass blood transfusion during sections from June 2019 to June 2021.According to the different nursing methods,patients divided into control group(n=50)and observation group(n=50).Among them,the control group implemented routine nursing,and the observation group implemented predictive nursing intervention based on the control group.Moreover,compared the differences in stress res-ponse,complications,and pain scores before and after the nursing of pregnant women undergoing rapid mass blood transfusion during CS.RESULTS The anxiety and depression scores of pregnant women in the two groups were significantly improved after nursing,and the psychological stress response of the observation group was significantly lower than that of the control group(P<0.05).The heart rate and mean arterial pressure(MAP)of the observation group during delivery were lower than those of the control group,and the MAP at the end of delivery was lower than that of the control group(P<0.05).Moreover,different pain scores improved significantly in both groups,with the observation group considerably less than the control group(P<0.05).After nursing,complications such as skin rash,urinary retention,chills,diarrhea,and anaphylactic shock in the observation group were 18%,which significantly higher than in the control group(4%)(P<0.05).CONCLUSION Predictive nursing intervention can effectively relieve the pain,reduce the incidence of complications,improve mood and stress response,and serve as a reference value for the nursing of women undergoing rapid mass transfusion during CS.展开更多
The exploration of the way"mass entrepreneurship and innovation"(MEI)education influences students'aspirations to become entrepreneurs has grown into an important area of analysis in studies related to h...The exploration of the way"mass entrepreneurship and innovation"(MEI)education influences students'aspirations to become entrepreneurs has grown into an important area of analysis in studies related to higher education.This research intends to examine the consequences of MEI education on students'tendency towards entrepreneurship,and to put forward methods for augmenting the teaching of innovation and entrepreneurship in private higher educational establishments.To achieve this objective,questionnaires and semi-structured interviews were employed in the study,which involved a total of 197 students and five education experts.The statistical analysis of the questionnaire data revealed that MEI education was positively related to students'entrepreneurial intentions,and that both entrepreneurial experience and family entrepreneurial background played moderating roles in this relationship.The interview findings indicated that private universities could enhance educational reforms by designing talent training programs,developing diversified curricula,and developing more professional entrepreneurial platforms to encourage students'entrepreneurial intentions.This study offers fresh insights for improving and perfecting the mechanism of innovation and entrepreneurship education in private universities.展开更多
Purpose:This meta-analytical study aimed to explore the effects of resistance training(RT) volume on body adiposity,metabolic risk,and inflammation in postmenopausal and older females.Methods:A systematic search was p...Purpose:This meta-analytical study aimed to explore the effects of resistance training(RT) volume on body adiposity,metabolic risk,and inflammation in postmenopausal and older females.Methods:A systematic search was performed for randomized controlled trials in PubMed,Scopus,Web of Science,and SciELO.Randomized controlled trials with postmenopausal and older females that compared RT effects on body adiposity,metabolic risk,and inflammation with a control group(CG) were included.Independent reviewers selected the studies,extracted the data,and performed the risk of bias and certainty of the evidence(Grading of Recommendations,Assessment,Development,and Evaluation(GRADE)) evaluations.Total body and abdominal adiposity,blood lipids,glucose,and C-reactive protein were included for meta-analysis.A random-effects model,standardized mean difference(Hedges’ g),and 95% confidence interval(95%CI) were used for meta-analysis.Results:Twenty randomized controlled trials(overall risk of bias:some concerns;GRADE:low to very low) with overweight/obese postmenopausal and older females were included.RT groups were divided into low-volume RT(LVRT,~44 sets/week) and high-volume RT(HVRT,~77 sets/week).Both RT groups presented improved body adiposity,metabolic risk,and inflammation when compared to CG.However,HVRT demonstrated higher effect sizes than LVRT for glucose(HVRT=-1.19;95%CI:-1.63 to-0.74;LVRT=-0.78;95%CI:-1.15 to-0.41) and C-reactive protein(HVRT=-1.00;95%CI:-1.32 to-0.67;LVRT=-0.34;95%CI,-0.63 to-0.04)) when compared to CG.Conclusion:Compared to CG,HVRT protocols elicit greater improvements in metabolic risk and inflammation outcomes than LVRT in overweight/obese postmenopausal and older females.展开更多
This paper investigates the hydrodynamic characteristics of floating truncated cylinders undergoing horizontal and vertical motions due to earthquake excitations in the finite water depth.The governing equation of the...This paper investigates the hydrodynamic characteristics of floating truncated cylinders undergoing horizontal and vertical motions due to earthquake excitations in the finite water depth.The governing equation of the hydrodynamic pressure acting on the cylinder is derived based on the radiation theory with the inviscid and incompressible assumptions.The governing equation is solved by using the method of separating variables and analytical solutions are obtained by assigning reasonable boundary conditions.The analytical result is validated by a numerical model using the exact artificial boundary simulation of the infinite water.The main variation and distribution characteristics of the hydrodynamic pressure acting on the side and bottom of the cylinder are analyzed for different combinations of wide-height and immersion ratios.The added mass coefficient of the cylinder is calculated by integrating the hydrodynamic pressure and simplified formulas are proposed for engineering applications.The calculation results show that the simplified formulas are in good agreement with the analytical solutions.展开更多
In-site soil flushing and aeration are the typical synergetic remediation technology for contaminated sites.The surfactant present in flushing solutions is bound to affect the aeration efficiency.The purpose of this s...In-site soil flushing and aeration are the typical synergetic remediation technology for contaminated sites.The surfactant present in flushing solutions is bound to affect the aeration efficiency.The purpose of this study is to evaluate the effect of surfactant frequently used in soil flushing on the oxygen mass transfer in micro-nano-bubble(MNB)aeration system.Firstly,bio-surfactants and chemical surfactants were used to investigate their effects on Sauter mean diameter of bubble(dBS),gas holdup(ε),volumetric mass-transfer coefficient(kLa)and liquid-side mass-transfer coefficient(kL)in the MNB aeration system.Then,based upon the experimental results,the Sardeing's and Frossling's models were modified to describe the effect of surfactant on kL in the MNB aeration.The results showed that,for the twenty aqueous surfactant solutions,with the increase in surfactant concentration,the value of dBS,kLa and kL decreased,while the value ofεand gas-liquid interfacial area(a)increased.These phenomena were mainly attributed to the synergistic effects of immobile bubble surface and the suppression of coalescence in the surfactant solutions.In addition,with the presence of electric charge,MNBs in anionic surfactant solutions were smaller and higher in number than in non-ionic surfactant solutions.Furthermore,the accumulation of surfactant on the gas-liquid interface was more conspicuous for small MNB,so the reduction of kL in anionic surfactant solutions was larger than that in non-ionic surfactant solutions.Besides,the modified Frossling's model predicted the effect of surfactant on kL in MNB aeration system with reasonable accuracy.展开更多
Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with te...Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion.展开更多
In this work,we propose a low-regularity Fourier integrator with almost mass conservation to solve the Davey-StewartsonⅡsystem(hyperbolic-elliptic case).Arbitrary order mass convergence could be achieved by the suita...In this work,we propose a low-regularity Fourier integrator with almost mass conservation to solve the Davey-StewartsonⅡsystem(hyperbolic-elliptic case).Arbitrary order mass convergence could be achieved by the suitable addition of correction terms,while keeping the first order accuracy in H~γ×H^(γ+1)for initial data in H^(γ+1)×H^(γ+1)withγ>1.The main theorem is that,up to some fixed time T,there exist constantsτ_(0)and C depending only on T and‖u‖_(L^(∞)((0,T);H^(γ+1)))such that,for any 0<τ≤τ_(0),we have that‖u(t_(n),·)-u^(n)‖H_γ≤C_(τ),‖v(t_(n),·)-v^(n)‖_(Hγ+1)≤C_(τ),where u^(n)and v^(n)denote the numerical solutions at t_(n)=nτ.Moreover,the mass of the numerical solution M(u^(n))satisfies that|M(u^(n))-M(u_0)|≤Cτ~5.展开更多
This paper utilizes the mathematical concept of approximation within an ellipsoid from a single viewpoint to present the spatial mass distribution function of the Earth's interior and its internal potential.The pr...This paper utilizes the mathematical concept of approximation within an ellipsoid from a single viewpoint to present the spatial mass distribution function of the Earth's interior and its internal potential.The primary focus lies in constructing the volume distribution of masses in the planet's interior, with the expansion coefficients being linear combinations of the Stokes constants. Several possible approaches are suggested for determining accurately these coefficients employing three-dimensional(biorthogonal)polynomials. By expressing the mass distribution function of the Earth's interior and its internal potential as a series, an algorithm is introduced for the calculation of gravitational energy. It allows us to estimate fluctuations in gravitational energy. The implementation of this algorithm offers the means of establishing the extent to which the Earth deviates from a state of hydrostatic equilibrium as a celestial body.Due to the aforementioned method, calculations have been conducted to validate its effectiveness and reliability. This example is given as an illustration of a given method for studying the internal structure of planets.展开更多
Assessment of rock mass quality significantly impacts the design and construction of underground and open-pit mines from the point of stability and economy.This study develops the novel Gromov-Hausdorff distance for r...Assessment of rock mass quality significantly impacts the design and construction of underground and open-pit mines from the point of stability and economy.This study develops the novel Gromov-Hausdorff distance for rock quality(GHDQR)methodology for rock mass quality rating based on multi-criteria grey metric space.It usually presents the quality of surrounding rock by classes(metric spaces)with specified properties and adequate interval-grey numbers.Measuring the distance between surrounding rock sample characteristics and existing classes represents the core of this study.The Gromov-Hausdorff distance is an especially useful discriminant function,i.e.,a classifier to calculate these distances,and assess the quality of the surrounding rock.The efficiency of the developed methodology is analyzed using the Mean Absolute Percentage Error(MAPE)technique.Seven existing methods,such as the Gaussian cloud method,Discriminant method,Mutation series method,Artificial neural network(ANN),Support vector machine(SVM),Grey wolf optimizer and Support vector classification method(GWO-SVC)and Rock mass rating method(RMR)are used for comparison with the proposed GHDQR method.The share of the highly accurate category of 85.71%clearly indicates compliance with actual values obtained by the compared methods.The results of comparisons showed that the model enables objective,efficient,and reliable assessment of rock mass quality.展开更多
Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)ar...Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)are promising devices for hydrogen production,given their high efficiency,rapid responsiveness,and compactness.Bipolar plates account for a relatively high percentage of the total cost and weight compared with other components of PEMWEs.Thus,optimization of their design may accelerate the promotion of PEMWEs.This paper reviews the advances in materials and flow-field design for bipolar plates.First,the working conditions of proton-exchange membrane fuel cells(PEMFCs)and PEMWEs are compared,including reaction direction,operating temperature,pressure,input/output,and potential.Then,the current research status of bipolar-plate substrates and surface coatings is summarized,and some typical channel-rib flow fields and porous flow fields are presented.Furthermore,the effects of materials on mass and heat transfer and the possibility of reducing corrosion by improving the flow field structure are explored.Finally,this review discusses the potential directions of the development of bipolar-plate design,including material fabrication,flow-field geometry optimization using threedimensional printing,and surface-coating composition optimization based on computational materials science.展开更多
Imaging the wave velocity field surrounding a borehole while drilling is a promising and urgently needed approach for extending the exploration range of the borehole point.This paper develops a drilling process detect...Imaging the wave velocity field surrounding a borehole while drilling is a promising and urgently needed approach for extending the exploration range of the borehole point.This paper develops a drilling process detection(DPD)system consisting of a multifunctional sensor and a pilot geophone installed at the top of the drilling rod,geophones at the tunnel face,a laser rangefinder,and an onsite computer.A weighted adjoint-state first arrival travel time tomography method is used to invert the P-wave velocity field of rock mass while borehole drilling.A field experiment in the ongoing construction of a deep buried tunnel in southwestern China demonstrated the DPD system and the tomography method.Time-frequency analysis of typical borehole drilling detection data shows that the impact drilling source is a pulse-like seismic exploration wavelet.A velocity field of the rock mass in a triangular area defined by the borehole trajectory and geophone receiving line can be obtained.Both the borehole core and optical image validate the inverted P-wave velocity field.A numerical simulation of a checkerboard benchmark model is used to test the tomography method.The rapid convergence of the misfits and consistent agreement between the inverted and observed travel times validate the P-wave velocity imaging.展开更多
Gas chromatography-mass spectrometry(GC-MS)is an extremely important analytical technique that is widely used in organic geochemistry.It is the only approach to capture biomarker features of organic matter and provide...Gas chromatography-mass spectrometry(GC-MS)is an extremely important analytical technique that is widely used in organic geochemistry.It is the only approach to capture biomarker features of organic matter and provides the key evidence for oil-source correlation and thermal maturity determination.However,the conventional way of processing and interpreting the mass chromatogram is both timeconsuming and labor-intensive,which increases the research cost and restrains extensive applications of this method.To overcome this limitation,a correlation model is developed based on the convolution neural network(CNN)to link the mass chromatogram and biomarker features of samples from the Triassic Yanchang Formation,Ordos Basin,China.In this way,the mass chromatogram can be automatically interpreted.This research first performs dimensionality reduction for 15 biomarker parameters via the factor analysis and then quantifies the biomarker features using two indexes(i.e.MI and PMI)that represent the organic matter thermal maturity and parent material type,respectively.Subsequently,training,interpretation,and validation are performed multiple times using different CNN models to optimize the model structure and hyper-parameter setting,with the mass chromatogram used as the input and the obtained MI and PMI values for supervision(label).The optimized model presents high accuracy in automatically interpreting the mass chromatogram,with R2values typically above 0.85 and0.80 for the thermal maturity and parent material interpretation results,respectively.The significance of this research is twofold:(i)developing an efficient technique for geochemical research;(ii)more importantly,demonstrating the potential of artificial intelligence in organic geochemistry and providing vital references for future related studies.展开更多
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud...The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.展开更多
In pumped storage projects,the permeability of rock masses is a crucial parameter in engineering design and construction.The rock mass permeability coefficient(K)is influenced by various geological parameters,and prev...In pumped storage projects,the permeability of rock masses is a crucial parameter in engineering design and construction.The rock mass permeability coefficient(K)is influenced by various geological parameters,and previous studies aimed to establish an accurate relationship between K and geological parameters.This study uses the improved sparrow search algorithm(ISSA)to optimize the parameter settings of the deep extreme learning machine(DELM),constructing a prediction model with flexible parameter selection and high accuracy.First,the Spearman method is applied to analyze the correlation between geological parameters.A sample database is built by comprehensively selecting four geological indexes:burial depth,rock quality designation(RQD),fracture density characteristic index(FD),and rock mass integrity designation(RID).Hence,the defects of the sparrow search algorithm(SSA)are enhanced using the improved strategy,and the initial input weights of the DELM are optimized.Finally,the proposed ISSA–DELM model is employed to predict the permeability coefficient of rock mass in the entire study area.The results showed that the predictive performance of the model is superior to that of the DELM and SSA–DELM.Therefore,this model successfully provides insights into the distribution characteristics of rock mass permeability at engineering sites.展开更多
In this study,we revisit the previous mass relations of mirror nuclei by considering 1/N-and 1/Z-dependent terms and the shell effect across a shell.The root-mean-squared deviation is 66 keV for 116 nuclei with neutro...In this study,we revisit the previous mass relations of mirror nuclei by considering 1/N-and 1/Z-dependent terms and the shell effect across a shell.The root-mean-squared deviation is 66 keV for 116 nuclei with neutron number N≥10,as com-pared with experimental data compiled in the AME2020 database.The predicted mass excesses of 173 proton-rich nuclei,including 98 unknown nuclei,are tabulated in the Supplemental Material herein with competitive accuracy.展开更多
Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is loc...Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is located among them.In this study,the magnetorheological damper in three modes:passive-off,passive-on,and semi-active mode with variable voltage between zero and 9 volts was used as an isolated layer between two subsystems.Multi-degrees-of-freedom structures with 5,10,and 15 floors in two dimensions were examined under 11 pairs of near field earthquakes.On each level,the displacement of MR dampers was taken into account.The responses of maximum displacement,maximum inter-story drift,and maximum base shear in controlled and uncontrolled buildings were compared to assess the suggested approach for seismic control of the structures.According to the results,the semi-active control method can reduce the response by more than 12%compared to the uncontrolled mode in terms of maximum displacement of the mass subsystem of the structures.This method can reduce more than 16%and 20%of the responses compared to the uncontrolled mode in terms of maximum inter-story drift and base shear of the structure,respectively.展开更多
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita...Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.展开更多
文摘BACKGROUND Li-Fraumeni syndrome(LFS)is a rare autosomal dominant cancer-predisposing syndrome,which can manifest as a polymorphic spectrum of malignancies.LFS is associated with an early onset in life,with the majority of cases occurring prior to the age of 46.Notwithstanding the infrequency of primary cardiac tumors,it behooves clinicians to remain vigilant in considering the differential diagnosis of such tumors in LFS patients who present with a cardiac mass.This is due to the markedly elevated risk for malignancy in this particular population,far surpassing that of the general populace.CASE SUMMARY Herein,we present a case of a 30-year-old female with LFS who was found to have a tricuspid valve leaflet mass.CONCLUSION This case exemplifies valuable learning points in the diagnostic approach for this exceptionally rare patient population.
基金supported by Science and Technology Project of Yunnan Provincial Transportation Department(Grant No.25 of 2018)the National Natural Science Foundation of China(Grant No.52279107)The authors are grateful for the support by the China Scholarship Council(CSC No.202206260203 and No.201906690049).
文摘Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.
基金supported by the National Natural Science Foundation of China(Grant No.42277165)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGCJ1821)the National Overseas Study Fund(Grant No.202106410040).
文摘As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.
文摘BACKGROUND Cesarean hemorrhage is one of the serious complications,and short-term massive blood transfusion can easily cause postoperative infection and physical stress response.However,predictive nursing intervention has important clinical significance for it.AIM To explore the effect of predictive nursing intervention on the stress response and complications of women undergoing short-term mass blood transfusion during cesarean section(CS).METHODS A clinical medical record of 100 pregnant women undergoing rapid mass blood transfusion during sections from June 2019 to June 2021.According to the different nursing methods,patients divided into control group(n=50)and observation group(n=50).Among them,the control group implemented routine nursing,and the observation group implemented predictive nursing intervention based on the control group.Moreover,compared the differences in stress res-ponse,complications,and pain scores before and after the nursing of pregnant women undergoing rapid mass blood transfusion during CS.RESULTS The anxiety and depression scores of pregnant women in the two groups were significantly improved after nursing,and the psychological stress response of the observation group was significantly lower than that of the control group(P<0.05).The heart rate and mean arterial pressure(MAP)of the observation group during delivery were lower than those of the control group,and the MAP at the end of delivery was lower than that of the control group(P<0.05).Moreover,different pain scores improved significantly in both groups,with the observation group considerably less than the control group(P<0.05).After nursing,complications such as skin rash,urinary retention,chills,diarrhea,and anaphylactic shock in the observation group were 18%,which significantly higher than in the control group(4%)(P<0.05).CONCLUSION Predictive nursing intervention can effectively relieve the pain,reduce the incidence of complications,improve mood and stress response,and serve as a reference value for the nursing of women undergoing rapid mass transfusion during CS.
文摘The exploration of the way"mass entrepreneurship and innovation"(MEI)education influences students'aspirations to become entrepreneurs has grown into an important area of analysis in studies related to higher education.This research intends to examine the consequences of MEI education on students'tendency towards entrepreneurship,and to put forward methods for augmenting the teaching of innovation and entrepreneurship in private higher educational establishments.To achieve this objective,questionnaires and semi-structured interviews were employed in the study,which involved a total of 197 students and five education experts.The statistical analysis of the questionnaire data revealed that MEI education was positively related to students'entrepreneurial intentions,and that both entrepreneurial experience and family entrepreneurial background played moderating roles in this relationship.The interview findings indicated that private universities could enhance educational reforms by designing talent training programs,developing diversified curricula,and developing more professional entrepreneurial platforms to encourage students'entrepreneurial intentions.This study offers fresh insights for improving and perfecting the mechanism of innovation and entrepreneurship education in private universities.
基金supported by the Minas Gerais State University (UEMG/Brazil)a Research Productivity Scholarship Program (UEMG-PQ08/2021)+1 种基金a doctorate scholarship from the National Council of Technological and Scientific Development (CNPq/Brazil-Process140473/2020-3)a doctorate scholarship fromthe Coordination of Improvement of Higher Education Personnel (CAPES/Brazil-Code 001)。
文摘Purpose:This meta-analytical study aimed to explore the effects of resistance training(RT) volume on body adiposity,metabolic risk,and inflammation in postmenopausal and older females.Methods:A systematic search was performed for randomized controlled trials in PubMed,Scopus,Web of Science,and SciELO.Randomized controlled trials with postmenopausal and older females that compared RT effects on body adiposity,metabolic risk,and inflammation with a control group(CG) were included.Independent reviewers selected the studies,extracted the data,and performed the risk of bias and certainty of the evidence(Grading of Recommendations,Assessment,Development,and Evaluation(GRADE)) evaluations.Total body and abdominal adiposity,blood lipids,glucose,and C-reactive protein were included for meta-analysis.A random-effects model,standardized mean difference(Hedges’ g),and 95% confidence interval(95%CI) were used for meta-analysis.Results:Twenty randomized controlled trials(overall risk of bias:some concerns;GRADE:low to very low) with overweight/obese postmenopausal and older females were included.RT groups were divided into low-volume RT(LVRT,~44 sets/week) and high-volume RT(HVRT,~77 sets/week).Both RT groups presented improved body adiposity,metabolic risk,and inflammation when compared to CG.However,HVRT demonstrated higher effect sizes than LVRT for glucose(HVRT=-1.19;95%CI:-1.63 to-0.74;LVRT=-0.78;95%CI:-1.15 to-0.41) and C-reactive protein(HVRT=-1.00;95%CI:-1.32 to-0.67;LVRT=-0.34;95%CI,-0.63 to-0.04)) when compared to CG.Conclusion:Compared to CG,HVRT protocols elicit greater improvements in metabolic risk and inflammation outcomes than LVRT in overweight/obese postmenopausal and older females.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52078010 and 52101321)the National Key Research and Development Program of China(Grant No.2022YFC3004300).
文摘This paper investigates the hydrodynamic characteristics of floating truncated cylinders undergoing horizontal and vertical motions due to earthquake excitations in the finite water depth.The governing equation of the hydrodynamic pressure acting on the cylinder is derived based on the radiation theory with the inviscid and incompressible assumptions.The governing equation is solved by using the method of separating variables and analytical solutions are obtained by assigning reasonable boundary conditions.The analytical result is validated by a numerical model using the exact artificial boundary simulation of the infinite water.The main variation and distribution characteristics of the hydrodynamic pressure acting on the side and bottom of the cylinder are analyzed for different combinations of wide-height and immersion ratios.The added mass coefficient of the cylinder is calculated by integrating the hydrodynamic pressure and simplified formulas are proposed for engineering applications.The calculation results show that the simplified formulas are in good agreement with the analytical solutions.
基金financially supported by the National Natural Science Foundation of China(41877240)National Key Research and Development Program of China(2018YFC1802300)Scientific Research Foundation of Graduate School of Southeast University(YBPY2154).
文摘In-site soil flushing and aeration are the typical synergetic remediation technology for contaminated sites.The surfactant present in flushing solutions is bound to affect the aeration efficiency.The purpose of this study is to evaluate the effect of surfactant frequently used in soil flushing on the oxygen mass transfer in micro-nano-bubble(MNB)aeration system.Firstly,bio-surfactants and chemical surfactants were used to investigate their effects on Sauter mean diameter of bubble(dBS),gas holdup(ε),volumetric mass-transfer coefficient(kLa)and liquid-side mass-transfer coefficient(kL)in the MNB aeration system.Then,based upon the experimental results,the Sardeing's and Frossling's models were modified to describe the effect of surfactant on kL in the MNB aeration.The results showed that,for the twenty aqueous surfactant solutions,with the increase in surfactant concentration,the value of dBS,kLa and kL decreased,while the value ofεand gas-liquid interfacial area(a)increased.These phenomena were mainly attributed to the synergistic effects of immobile bubble surface and the suppression of coalescence in the surfactant solutions.In addition,with the presence of electric charge,MNBs in anionic surfactant solutions were smaller and higher in number than in non-ionic surfactant solutions.Furthermore,the accumulation of surfactant on the gas-liquid interface was more conspicuous for small MNB,so the reduction of kL in anionic surfactant solutions was larger than that in non-ionic surfactant solutions.Besides,the modified Frossling's model predicted the effect of surfactant on kL in MNB aeration system with reasonable accuracy.
基金Project supported by the Doctoral Fund of Yanshan University (Grant No.B919)the Program of Independent Research for Young Teachers of Yanshan University (Grant No.020000534)the S&T Program of Hebei Province of China (Grant No.QN2016123)。
文摘Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion.
基金supported by the NSFC(11901120)supported by the NSFC(12171356)the Science and Technology Program of Guangzhou,China(2024A04J4027)。
文摘In this work,we propose a low-regularity Fourier integrator with almost mass conservation to solve the Davey-StewartsonⅡsystem(hyperbolic-elliptic case).Arbitrary order mass convergence could be achieved by the suitable addition of correction terms,while keeping the first order accuracy in H~γ×H^(γ+1)for initial data in H^(γ+1)×H^(γ+1)withγ>1.The main theorem is that,up to some fixed time T,there exist constantsτ_(0)and C depending only on T and‖u‖_(L^(∞)((0,T);H^(γ+1)))such that,for any 0<τ≤τ_(0),we have that‖u(t_(n),·)-u^(n)‖H_γ≤C_(τ),‖v(t_(n),·)-v^(n)‖_(Hγ+1)≤C_(τ),where u^(n)and v^(n)denote the numerical solutions at t_(n)=nτ.Moreover,the mass of the numerical solution M(u^(n))satisfies that|M(u^(n))-M(u_0)|≤Cτ~5.
文摘This paper utilizes the mathematical concept of approximation within an ellipsoid from a single viewpoint to present the spatial mass distribution function of the Earth's interior and its internal potential.The primary focus lies in constructing the volume distribution of masses in the planet's interior, with the expansion coefficients being linear combinations of the Stokes constants. Several possible approaches are suggested for determining accurately these coefficients employing three-dimensional(biorthogonal)polynomials. By expressing the mass distribution function of the Earth's interior and its internal potential as a series, an algorithm is introduced for the calculation of gravitational energy. It allows us to estimate fluctuations in gravitational energy. The implementation of this algorithm offers the means of establishing the extent to which the Earth deviates from a state of hydrostatic equilibrium as a celestial body.Due to the aforementioned method, calculations have been conducted to validate its effectiveness and reliability. This example is given as an illustration of a given method for studying the internal structure of planets.
文摘Assessment of rock mass quality significantly impacts the design and construction of underground and open-pit mines from the point of stability and economy.This study develops the novel Gromov-Hausdorff distance for rock quality(GHDQR)methodology for rock mass quality rating based on multi-criteria grey metric space.It usually presents the quality of surrounding rock by classes(metric spaces)with specified properties and adequate interval-grey numbers.Measuring the distance between surrounding rock sample characteristics and existing classes represents the core of this study.The Gromov-Hausdorff distance is an especially useful discriminant function,i.e.,a classifier to calculate these distances,and assess the quality of the surrounding rock.The efficiency of the developed methodology is analyzed using the Mean Absolute Percentage Error(MAPE)technique.Seven existing methods,such as the Gaussian cloud method,Discriminant method,Mutation series method,Artificial neural network(ANN),Support vector machine(SVM),Grey wolf optimizer and Support vector classification method(GWO-SVC)and Rock mass rating method(RMR)are used for comparison with the proposed GHDQR method.The share of the highly accurate category of 85.71%clearly indicates compliance with actual values obtained by the compared methods.The results of comparisons showed that the model enables objective,efficient,and reliable assessment of rock mass quality.
基金the National Natural Science Foundation of China(No.52125102)the National Key Research and Development Program of China(No.2021YFB4000101)Fundamental Research Funds for t he Central Universities(No.FRF-TP-2021-02C2)。
文摘Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)are promising devices for hydrogen production,given their high efficiency,rapid responsiveness,and compactness.Bipolar plates account for a relatively high percentage of the total cost and weight compared with other components of PEMWEs.Thus,optimization of their design may accelerate the promotion of PEMWEs.This paper reviews the advances in materials and flow-field design for bipolar plates.First,the working conditions of proton-exchange membrane fuel cells(PEMFCs)and PEMWEs are compared,including reaction direction,operating temperature,pressure,input/output,and potential.Then,the current research status of bipolar-plate substrates and surface coatings is summarized,and some typical channel-rib flow fields and porous flow fields are presented.Furthermore,the effects of materials on mass and heat transfer and the possibility of reducing corrosion by improving the flow field structure are explored.Finally,this review discusses the potential directions of the development of bipolar-plate design,including material fabrication,flow-field geometry optimization using threedimensional printing,and surface-coating composition optimization based on computational materials science.
基金the support of the National Natural Science Foundation of China(Nos.42207211,42202320 and 42172296)Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education,Tongji University(No.KLE-TJGE-G2304).
文摘Imaging the wave velocity field surrounding a borehole while drilling is a promising and urgently needed approach for extending the exploration range of the borehole point.This paper develops a drilling process detection(DPD)system consisting of a multifunctional sensor and a pilot geophone installed at the top of the drilling rod,geophones at the tunnel face,a laser rangefinder,and an onsite computer.A weighted adjoint-state first arrival travel time tomography method is used to invert the P-wave velocity field of rock mass while borehole drilling.A field experiment in the ongoing construction of a deep buried tunnel in southwestern China demonstrated the DPD system and the tomography method.Time-frequency analysis of typical borehole drilling detection data shows that the impact drilling source is a pulse-like seismic exploration wavelet.A velocity field of the rock mass in a triangular area defined by the borehole trajectory and geophone receiving line can be obtained.Both the borehole core and optical image validate the inverted P-wave velocity field.A numerical simulation of a checkerboard benchmark model is used to test the tomography method.The rapid convergence of the misfits and consistent agreement between the inverted and observed travel times validate the P-wave velocity imaging.
基金financially supported by China Postdoctoral Science Foundation(Grant No.2023M730365)Natural Science Foundation of Hubei Province of China(Grant No.2023AFB232)。
文摘Gas chromatography-mass spectrometry(GC-MS)is an extremely important analytical technique that is widely used in organic geochemistry.It is the only approach to capture biomarker features of organic matter and provides the key evidence for oil-source correlation and thermal maturity determination.However,the conventional way of processing and interpreting the mass chromatogram is both timeconsuming and labor-intensive,which increases the research cost and restrains extensive applications of this method.To overcome this limitation,a correlation model is developed based on the convolution neural network(CNN)to link the mass chromatogram and biomarker features of samples from the Triassic Yanchang Formation,Ordos Basin,China.In this way,the mass chromatogram can be automatically interpreted.This research first performs dimensionality reduction for 15 biomarker parameters via the factor analysis and then quantifies the biomarker features using two indexes(i.e.MI and PMI)that represent the organic matter thermal maturity and parent material type,respectively.Subsequently,training,interpretation,and validation are performed multiple times using different CNN models to optimize the model structure and hyper-parameter setting,with the mass chromatogram used as the input and the obtained MI and PMI values for supervision(label).The optimized model presents high accuracy in automatically interpreting the mass chromatogram,with R2values typically above 0.85 and0.80 for the thermal maturity and parent material interpretation results,respectively.The significance of this research is twofold:(i)developing an efficient technique for geochemical research;(ii)more importantly,demonstrating the potential of artificial intelligence in organic geochemistry and providing vital references for future related studies.
基金funded by the National Natural Science Foundation of China(No.51806236,No.51806239)the Fundamental Research Funds for the Central Universities(No.2015XKMS059)+1 种基金Shaanxi Postdoctoral Fund Project(No.2018BSHEDZZ56)Foundation of Key Laboratory of Thermo-Fluid Science and Engineering(Xi'an Jiaotong University),Ministry of Education(No.KLTFSE2017KF01)。
文摘The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.
文摘In pumped storage projects,the permeability of rock masses is a crucial parameter in engineering design and construction.The rock mass permeability coefficient(K)is influenced by various geological parameters,and previous studies aimed to establish an accurate relationship between K and geological parameters.This study uses the improved sparrow search algorithm(ISSA)to optimize the parameter settings of the deep extreme learning machine(DELM),constructing a prediction model with flexible parameter selection and high accuracy.First,the Spearman method is applied to analyze the correlation between geological parameters.A sample database is built by comprehensively selecting four geological indexes:burial depth,rock quality designation(RQD),fracture density characteristic index(FD),and rock mass integrity designation(RID).Hence,the defects of the sparrow search algorithm(SSA)are enhanced using the improved strategy,and the initial input weights of the DELM are optimized.Finally,the proposed ISSA–DELM model is employed to predict the permeability coefficient of rock mass in the entire study area.The results showed that the predictive performance of the model is superior to that of the DELM and SSA–DELM.Therefore,this model successfully provides insights into the distribution characteristics of rock mass permeability at engineering sites.
基金supported by the National Natural Science Foundation of China(No.11905130).
文摘In this study,we revisit the previous mass relations of mirror nuclei by considering 1/N-and 1/Z-dependent terms and the shell effect across a shell.The root-mean-squared deviation is 66 keV for 116 nuclei with neutron number N≥10,as com-pared with experimental data compiled in the AME2020 database.The predicted mass excesses of 173 proton-rich nuclei,including 98 unknown nuclei,are tabulated in the Supplemental Material herein with competitive accuracy.
文摘Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is located among them.In this study,the magnetorheological damper in three modes:passive-off,passive-on,and semi-active mode with variable voltage between zero and 9 volts was used as an isolated layer between two subsystems.Multi-degrees-of-freedom structures with 5,10,and 15 floors in two dimensions were examined under 11 pairs of near field earthquakes.On each level,the displacement of MR dampers was taken into account.The responses of maximum displacement,maximum inter-story drift,and maximum base shear in controlled and uncontrolled buildings were compared to assess the suggested approach for seismic control of the structures.According to the results,the semi-active control method can reduce the response by more than 12%compared to the uncontrolled mode in terms of maximum displacement of the mass subsystem of the structures.This method can reduce more than 16%and 20%of the responses compared to the uncontrolled mode in terms of maximum inter-story drift and base shear of the structure,respectively.
基金supported by the National Natural Science Foundation of China(Nos.52279107 and 52379106)the Qingdao Guoxin Jiaozhou Bay Second Submarine Tunnel Co.,Ltd.,the Academician and Expert Workstation of Yunnan Province(No.202205AF150015)the Science and Technology Innovation Project of YCIC Group Co.,Ltd.(No.YCIC-YF-2022-15)。
文摘Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.