The mass entransy describes the mass-diffusion ability of the solution system, and the mass-diffusion process with the finite concentration difference always leads to the mass-entransy dissipation. This paper studies ...The mass entransy describes the mass-diffusion ability of the solution system, and the mass-diffusion process with the finite concentration difference always leads to the mass-entransy dissipation. This paper studies the equimolar reverse constant-temperature mass-diffusion process with Fick's law( g∝Δ(c)). The optimal concentration paths for the MED(Minimum Entransy Dissipation) are derived and compared with those for the MEG(Minimum Entropy Generation) and CCR(Constant Concentration Ratio) operations. It is indicated that the strategy of the MED is equivalent to that of the CCD(Constant Concentration Difference) of the same component; whether the MED or the MEG is selected as the optimization objective, the strategy of the CCD is much better than that of the CCR.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 51576207 & 51356001)
文摘The mass entransy describes the mass-diffusion ability of the solution system, and the mass-diffusion process with the finite concentration difference always leads to the mass-entransy dissipation. This paper studies the equimolar reverse constant-temperature mass-diffusion process with Fick's law( g∝Δ(c)). The optimal concentration paths for the MED(Minimum Entransy Dissipation) are derived and compared with those for the MEG(Minimum Entropy Generation) and CCR(Constant Concentration Ratio) operations. It is indicated that the strategy of the MED is equivalent to that of the CCD(Constant Concentration Difference) of the same component; whether the MED or the MEG is selected as the optimization objective, the strategy of the CCD is much better than that of the CCR.