The massively separated flow past triple cylin- ders (TriC) in tandem arrangement is simulated using the improved delayed detached-eddy simulation (IDDES) method based on the shear stress transport (SST) model, ...The massively separated flow past triple cylin- ders (TriC) in tandem arrangement is simulated using the improved delayed detached-eddy simulation (IDDES) method based on the shear stress transport (SST) model, coupled with the high order adaptive dissipation scheme. The spacing between adjacent cylinders is sub-critical (1.435D). IDDES prediction of two cylinders (TC) with the same spacing is compared to experimental data for validation, and the numerical results agree well with the available measurements, except for the asymmetry in the gap region. The flow past TriC is investigated using the same method. Generally, the mean flow quantities past TriC, such as the velocity, pressure, and vorticity, are similar to the corresponding components of TC. However, the pressure fluctuations on the TriC surface are uniformly larger than those on TC. Meanwhile, the instantaneous flows past TriC are much more complex. The periodical blockage in the first gap region is found in the TriC case and leads to the up-and-down movement of shear layer in the second gap region.展开更多
Line surveys of complex molecules with millimeter and sub-millimeter telescopes are important for probing the physical and chemical environments of massive star forming regions(MSFRs).We present a molecular line surve...Line surveys of complex molecules with millimeter and sub-millimeter telescopes are important for probing the physical and chemical environments of massive star forming regions(MSFRs).We present a molecular line survey with the Submillimeter Array(SMA) in the frequency ranges of 220.3–222.3 GHz and 230.3–232.3 GHz toward G10.6-0.4, the brightest star forming core in the W31 complex. Ninety-nine transitions from 22 molecular species and their isotopologues are identified. The moment 0 images of typical molecules show a compact core which is concentrated at the continuum peak position. Based on the local thermodynamic equilibrium assumption, the molecular line data are modeled. The rotational temperatures of those molecular species range from 96 to 178 K and their column densities range from 2.0×1014to 3.7×1017cm-2. The observational data suggest that all complex molecules are located in a warm environment. Chemical environments of the molecules are discussed. We compared molecular abundances and gas temperatures in G10.6-0.4 with those in other MSFRs, and found that gas temperatures and fractional abundances of specific molecules in G10.6-0.4 are similar to the typical MSFR W51 North, suggesting that there are similar physical and chemical environments in these two MSFRs.展开更多
We report the internal proper motions of 12 GHz methanol masers in mas-sive star-forming region G35.20-0.74 observed with the Very Long Baseline Array (VLBA) at four epochs spanning about 1.5 yr. Two groups of maser...We report the internal proper motions of 12 GHz methanol masers in mas-sive star-forming region G35.20-0.74 observed with the Very Long Baseline Array (VLBA) at four epochs spanning about 1.5 yr. Two groups of maser features were de-tected, groups A and B, and the latter that had a V-shaped spatial distribution is likely tracing the north outflow in G35.20-0.74. We present a three-dimensional model for the kinematics of these masers, by assuming the interstellar medium was blown by the stellar wind from the driving source (G35.2N) of the outflow. Adopting a position angle of ~ 81° for the main axis of the outflow from previous studies, we estimate an inclination of 35 ° ± 5.5°, a velocity of 8.1 ± 0.7 km s^-1 for the stellar wind along the main axis and an expansion speed gradient of 0.05 ± 0.016 km s^-1 AU^-1. From the model, we derive the age of the north outflow in G35.20-0.74 to be ~ 1.6 × 10^4 yr.展开更多
We present a multi-line study of the massive star-forming region IRAS 22506+5944. A new 6.7 GHz methanol maser was detected. ^12CO, 13CO, C180 and HCO+ J = 1 - 0 transition observations reveal a star-formation compl...We present a multi-line study of the massive star-forming region IRAS 22506+5944. A new 6.7 GHz methanol maser was detected. ^12CO, 13CO, C180 and HCO+ J = 1 - 0 transition observations reveal a star-formation complex consisting mainly of two cores. The dominant core has a mass of more than 200 Mo, while the other one is only about 35 340. Both cores are obviously at different evolutionary stages. A 12CO energetic bipolar outflow was detected with an outflow mass of about 15 Mo.展开更多
The Gacun Kuroko-type deposit, Southwestern China, is hosted in rhyolitic rocks associated with the underlying mafic rocks occurred in the - 1000 m deep fault - bounded basin within the intra -arc rifting zone which f...The Gacun Kuroko-type deposit, Southwestern China, is hosted in rhyolitic rocks associated with the underlying mafic rocks occurred in the - 1000 m deep fault - bounded basin within the intra -arc rifting zone which formed on the Triassic Yidun island - arc. Two vertically separated alteration systems are recognized: one is conformable or semiconformable alteration zone developed in - 150 m thick mafic unit 1-1.5 km below the massive sulfide ore body; the other is discordant alteration pipe directly surrounded around stockwork ore within rhyolitic unit. The lower conformable alteration zone extending for several kilometers along strike is characterized by silicification and epidotization which result in the development of quartz vein and quartz-epidote vein systems in mafic lava flows and replacement of primary minerals and groundmass in spilitized mafic volcanics and dikes by quartz, epidote - group minerals and sodic plagioclase. Sulfides often occur in the vein system and altered mafic volcanics. Quartz solubility relation indicates that silicification is a consequence of interaction of Si- saturated fluids with mafic rocks in a higher temperature system (T>340℃), intensifying by intrusion of mafic dike or high-level acidic magma chamber. The alteration pipe of diameter about 2 km shows a similar mineralogical zoning to Kuroko deposits of Japan. The sequence is quartz + hyalophane; sericite + chlorite + quartz and zeolite-like zones from core to margins of the pipe. The chlorite core only occurs in the root part of the alteration pipe and downwards transfers into epidote - chlorite and epidote - quartz vein swarm extending 500 m downwards. The felsic rocks away from the orebody and alteration pipe took place district-scale alteration, which has typical low-temperature mineral association: illite + albite + quartz + calcite. Whole -rock and quartz δ18O values indicate that district - scale alteration is a result of interaction of seawater with rocks at lower temperature (T<200℃)under water-dominated condition. However, the altered rocks from the pipe show remarkably δ18O enrichment, and bulk -rock δ18O values decreased gradually toward stockwork orebody from 15.1‰-l5. 75‰ in zeolite-like zone and 12. 05‰-14. 2‰ in sericite - quartz zone to 11.3 ‰ - 14. 4‰ in quartz - hyalophane zone. The filled temperatures of fluid inclusions in quartz and sphalerite lie in the ranges of 280 -320 ℃ for quartz - hyalophane zone and 250 ℃ to 297 ℃ for sericite-quartz zone. The estimated δ18O values of hydrothermal fluids are 7. 98‰ and3.2‰, respectively, based on quartz δ18O data in the deposit. The lower conformable alteration is considered to be approximately coeval with the alteration pipe, based on the SiO2 concentration in the fluids, which restrict the main fluid - rock reaction zone to be located in mafic horizon by quartz barometer, and metal element flux calculation and sulfide - epidote vein system developed both in alteration systems. High - salinity fluid inclusions in gangue quartz (>8% eq. NaCl) from stockwork ore and in quartz phenocryst (>40% eq. NaCl) in footwall rhyolite strongly suggest the existence of hot-saline brine to react with mafic complex and leach metal components, which probably originates mainly from magmatic fluid derived from high-level acidic magma chamber. The brine layer located in mafic unit possibly heats and drives the overlying single -pass convective seawater reacting with felsic rocks. The 'density window' may be expected to occur on the interface between seawater and brine layer, when the brine becomes to be gravitationally instability by the turbulent entrainment of seawater during magmatic and/or tectonic activities. The sulfide mineralization and alteration pipe is inter preted as an effect of the 'density window' through which the mixed fluids of brine with seawater adiabatically discharges upwards.展开更多
Previous observations have revealed an accretion disk and outflow motion in the high-mass starforming region G192.16–3.84, but collapse has not been reported before. Here we present molecular line and continuum obser...Previous observations have revealed an accretion disk and outflow motion in the high-mass starforming region G192.16–3.84, but collapse has not been reported before. Here we present molecular line and continuum observations toward the massive core G192.16–3.84 with the Submillimeter Array. C18 O(2–1) and HCO+(3–2) lines show pronounced blue profiles, indicating gas infalling in this region. This is the first time that infall motion has been reported in the G192.16–3.84 core. Two-layer model fitting gives infall velocities of 2.0±0.2 and 2.8±0.1 km s-1. Assuming that the cloud core follows a power-law density profile(ρ∝ r1.5), the corresponding mass infall rates are(4.7±1.7)×10-3 and(6.6±2.1)×10-3 M⊙yr-1 for C18 O(2–1) and HCO+(3–2), respectively. The derived infall rates are in agreement with the turbulent core model and those in other high-mass star-forming regions, suggesting that high accretion rate is a general requirement for forming a massive star.展开更多
In this paper, we investigate the problem of supersonic convection caused by the application of the usual Mixing Length Theory (MLT), and give a modification to the original expression of the MLT. In the case of the u...In this paper, we investigate the problem of supersonic convection caused by the application of the usual Mixing Length Theory (MLT), and give a modification to the original expression of the MLT. In the case of the usual MLT, a zone of supersonic convection exists when the stellar model goes into yellow-red supergiant phase. When the modification is applied, the models of late type supergiants possess shallower convective envelopes for a given temperature compared with the normal formalism of the MLT. Therefore the stellar models made with our new formalism move to lower effective temperature by 100-400 K depending on the luminosity of the star. Such a modification does not affect the convective envelope structure of lower luminosity late type stars, as both expressions of the MLT give the same result. In these stars.展开更多
Employing the stellar evolution code Modules for Experiments in Stellar Astrophysics(MESA),we calculate yields of heavy elements from massive stars via stellar wind and core−collapse supernova(CCSN)ejecta to the inter...Employing the stellar evolution code Modules for Experiments in Stellar Astrophysics(MESA),we calculate yields of heavy elements from massive stars via stellar wind and core−collapse supernova(CCSN)ejecta to the interstellar medium(ISM).In our models,the initial masses(Mini)of massive stars are taken from 13 to 80 M⊙,their initial rotational velocities(V)are 0,300 and 500 km s^(−1),and their metallicities are[Fe/H]=−3,−2,−1 and 0.The yields of heavy elements coming from stellar winds are mainly affected by stellar rotation which changes the chemical abundances of stellar surfaces via chemically homogeneous evolution,and enhances mass-loss rate.We estimate that the stellar wind can produce heavy element yields of about 10^(−2)(for low metallicity models)to a mass of severalM⊙(for low metallicity and rapid rotation models).The yields of heavy elements produced by CCSN ejecta also depend on the large amount of remnantmass which is mainly determined by the mass of the CO-core.Our models calculate that the yields of heavy elements produced by CCSN ejecta can get up to several M⊙.Compared with stellar wind,CCSN ejecta has a greater contribution to the heavy elements in ISM.We also compare the 56Ni yields calculated in this work with the observational estimate.Our models only explain the 56Ni masses produced by faint SNe or normal SNe with progenitor mass lower than about 25 M⊙,and greatly underestimate the 56Ni masses produced by stars with masses higher than about 30M⊙.展开更多
I identify a point-symmetric structure in recently published VLT/MUSE velocity maps of different elements in a plane along the line of sight at the center of the supernova remnant SNR 0540-69.3,and argue that jitterin...I identify a point-symmetric structure in recently published VLT/MUSE velocity maps of different elements in a plane along the line of sight at the center of the supernova remnant SNR 0540-69.3,and argue that jittering jets that exploded this core collapse supernova shaped this point-symmetric structure.The four pairs of two opposite clumps that compose this point symmetric structure suggest that two to four pairs of jittering jets shaped the inner ejecta in this plane.In addition,intensity images of several spectral lines reveal a faint strip(the main jet-axis)that is part of this plane of jittering jets and its similarity to morphological features in a few other SNRs and in some planetary nebulae further suggests shaping by jets.My interpretation implies that in addition to instabilities,jets also mix elements in the ejecta of core collapse supernovae.Based on the point-symmetric structure and under the assumption that jittering jets exploded this supernova,I estimate the component of the neutron star natal kick velocity on the plane of the sky to be■235 km s^(-1),and at an angle of■47°to the direction of the main jet-axis.I analyze this natal kick direction together with 12 other SNRs in the frame of the jittering jets explosion mechanism.展开更多
The excitation of H2O masers usually needs very high density gas,hence it can serve as a marker of dense gas in HⅡ region. We selected a sample of H2O maser sources from Plume et al. (four with, and four without det...The excitation of H2O masers usually needs very high density gas,hence it can serve as a marker of dense gas in HⅡ region. We selected a sample of H2O maser sources from Plume et al. (four with, and four without detected CS(J = 7 - 6) emission), and observed them in ^13CO(J=1-0) and C^18O (J=1-0). C^18O (J=1-0) emission was detected only in three of the sources with detected CS(J=7-6) emission. An analysis combined with some data in the literature suggests that these dense cores may be located at different evolutionary stages. Multi-line observation study may provide us clues on the evolution of massive star forming regions and the massive stars themselves.展开更多
The observation of oxygen(O)-and nitrogen(N)-bearing molecules gives an idea about the complex prebiotic chemistry in the interstellar medium.Recent millimeter and submillimeter wavelength observations have shown the ...The observation of oxygen(O)-and nitrogen(N)-bearing molecules gives an idea about the complex prebiotic chemistry in the interstellar medium.Recent millimeter and submillimeter wavelength observations have shown the presence of complex O-and N-bearing molecules in the star formation regions.So,the investigation of those molecules is crucial to understanding the chemical complexity in the star-forming regions.In this article,we present the identification of the rotational emission lines of N-bearing molecules ethyl cyanide(C_(2)H_(5)CN)and cyanoacetylene(HC_(3)N),and O-bearing molecule methyl formate(CH_(3)OCHO)toward high-mass protostar IRAS18089–1732 using the Atacama Compact Array.We also detected the emission lines of both the N-and O-bearing molecule formamide(NH_(2)CHO)in the envelope of IRAS 18089–1732.We have detected the v=0 and 1 state rotational emission lines of CH_(3)OCHO.We also detected the two vibrationally excited states of HC_(3)N(v7=1 and v7=2).The estimated fractional abundances of C_(2)H_(5)CN,HC_(3)N(v7=1),HC_(3)N(v7=2),and NH_(2)CHO toward IRAS 18089–1732 are(1.40±0.5)×10^(-10),(7.5±0.7)×10^(-11),(3.1±0.4)×10^(-11),and(6.25±0.82)×10^(-11)respectively.Similarly,the estimated fractional abundances of CH_(3)OCHO(v=0)and CH_(3)OCHO(v=1)are(1.90±0.9)×10^(-9)and(8.90±0.8)×10^(-10),respectively.We also created the integrated emission maps of the detected molecules,and the observed molecules may have originated from the extended envelope of the protostar.We show that C_(2)H_(5)CNand HC_(3)N are most probably formed via the subsequential hydrogenation of the CH_(2)CHCNand the reaction between C_(2)H_(2)and CN on the grain surface of IRAS 18089–1732.We found that NH_(2)CHO is probably produced due to the reaction between NH_(2)and H_(2)CO in the gas phase.Similarly,CH_(3)OCHO is possibly created via the reaction between radical CH_(3)O and radical HCO on the grain surface of IRAS 18089–1732.展开更多
In star formation regions,the complex organic molecules(COMs)that contain peptide bonds(-NH-C(=O)-)play a major role in the metabolic process because-NH-C(=O)-is connected to amino acids(R-CHNH_2-COOH).Over the past f...In star formation regions,the complex organic molecules(COMs)that contain peptide bonds(-NH-C(=O)-)play a major role in the metabolic process because-NH-C(=O)-is connected to amino acids(R-CHNH_2-COOH).Over the past few decades,many COMs containing peptide-like bonds have been detected in hot molecular cores(HMCs),hot corinos,and cold molecular clouds,however,their prebiotic chemistry is poorly understood.We present the first detection of the rotational emission lines of formamide(NH_2CHO)and isocyanic acid(HNCO),which contain peptide-like bonds toward the chemically rich HMC G358.93-0.03 MM1,using high-resolution and high-sensitivity Atacama Large Millimeter/submillimeter Array bands 6 and 7.We estimate that the column densities of NH_2CHO and HNCO toward G358.93-0.03 MM1 are(2.80±0.29)×10~(15)cm~(-2)and(1.80±0.42)×10~(16)cm~(-2)with excitation temperatures of 165±21 K and 170±32 K,respectively.The fractional abundances of NH_2CHO and HNCO toward G358.93-0.03 MM1 are(9.03±1.44)×10~(-10)and(5.80±2.09)×10^(-9).We compare the estimated abundances of NH_2CHO and HNCO with the existing threephase warm-up chemical model abundance values and notice that the observed and modeled abundances are very close.We conclude that NH_2CHO is produced by the reaction of NH_2and H_2CO in the gas phase toward G358.93-0.03 MM1.Likewise,HNCO is produced on the surface of grains by the reaction of NH and CO toward G358.93-0.03 MM1.We also find that NH_2CHO and HNCO are chemically linked toward G358.93-0.03 MM1.展开更多
Based on Kohler’s ternary solution model and Miedemaa’s model for calculating the heats of formation-△Hij of binary Systems, the integral equation has ben established for calculating the activity coefficients in te...Based on Kohler’s ternary solution model and Miedemaa’s model for calculating the heats of formation-△Hij of binary Systems, the integral equation has ben established for calculating the activity coefficients in ternarysolution. With the equation, the activity coefficients in Ti-15-3 melt have been calculated. The results show that allof components’ activity coefficients are less than 1, in other wolds, compared with ideal solution, all components takeon a negative deviation. At 2000K, the activity coefficients in Ti-15-3 melt are shown as: about 0.9 for Ti, about0.85 for V, about 0. 1 for Al, aboaut 0.5 for Cr and about 0.23 for Sn. me addition of V lowers the activity coefficient of Ti, but raise the ones of Al, Cr and Sn. These results can be directly used to calculate the evaporation loss ofAl, Cr and Sn during the ISM(Induction Skull Melting) process and at the same time estimate the reactivity betweenTi-15-3 melt and refractory during the cast production.展开更多
Gamma-ray bursts (GRBs) are the most intense transient gamma-ray events in the sky; this, together with the strong evidence (the isotropic and inhomogeneous distribution of GRBs detected by BASTE) that they are locat...Gamma-ray bursts (GRBs) are the most intense transient gamma-ray events in the sky; this, together with the strong evidence (the isotropic and inhomogeneous distribution of GRBs detected by BASTE) that they are located at cosmological distances, makes them the most energetic events ever known. For example, the observed radiation energies of some GRBs are equivalent to the total convertion into radiation of the mass energy of more than one solar mass. This is thousand times stronger than the energy of a supernova explosion. Some unconventional energy mechanism and extremely high conversion efficiency for these mysterious events are required. The discovery of host galaxies and association with supernovae at cosmological distances by the recently launched satellite of BeppoSAX and ground based radio and optical telescopes in GRB afterglow provides further support to the cosmological origin of GRBs and put strong constraints on their central engine. It is the aim of this article to review the possible central engines, energy mechanisms, dynamical and spectral evolution of GRBs, especially focusing on the afterglows in multi-wavebands.展开更多
Observations on relativistic jets in radio galaxies, active galactic nuclei, and 'microquasars' revealed that many of these outflows are cylindrical, not conical. So it is worthwhile to investigate the evoluti...Observations on relativistic jets in radio galaxies, active galactic nuclei, and 'microquasars' revealed that many of these outflows are cylindrical, not conical. So it is worthwhile to investigate the evolution of cylindrical jets in gamma-ray bursts. We discuss afterglows from cylindrical jets in a wind environment. Numerical results as well as analytic solutions in some special cases are presented. Our light curves are steeper compared to those in the homogeneous interstellar medium case, carefully considered by Cheng, Huang & Lu. We conclude that some afterglows, used to be interpreted as isotropic fireballs in a wind environment, can be fitted as well by cylindrical jets interacting with a wind.展开更多
High energy emission (〉 tens MeV) of Gamma-Ray Bursts (GRBs) provides an important clue on the physical processes occurring in GRBs that may be correlated with the GRB early afterglow. A shallow decline phase has...High energy emission (〉 tens MeV) of Gamma-Ray Bursts (GRBs) provides an important clue on the physical processes occurring in GRBs that may be correlated with the GRB early afterglow. A shallow decline phase has been well identified in about half of Swift Gamma-ray Burst x-ray afterglows. The widely considered interpretation inv.olves a significant energy injection and possibly time-evolving shock parameter(s). We calculate the synchrotron-self-Compton (SSC) radiation of such an external forward shock and show that it could explain the well-known long term high energy (i.e., tens MeV to GeV) afterglow of GRB 940217. We propose that cooperation of Swift and GLAST will help to reveal the nature of GRBs.展开更多
In order to search for intensity fluctuations on the HCN(1-0) and HCO+(1-0) line pro- files, which could arise due to possible small-scale inhomogeneous structure, long-term observations of high-mass star-forming...In order to search for intensity fluctuations on the HCN(1-0) and HCO+(1-0) line pro- files, which could arise due to possible small-scale inhomogeneous structure, long-term observations of high-mass star-forming cores S140 and S199 were carried out. The data were processed by the Fourier filtering method. Line temperature fluctuations that exceed the noise level were detected. Assuming the cores consist of a large number of randomly moving small thermal fragments, the total number of frag- ments is - 4 × 106 for the region with linear size - 0.1 pc in S140 and - 106 for the region with linear size - 0.3 pc in S 199. Physical parameters of fragments in S 140 were obtained from detailed modeling of the HCN emission in the framework of the clumpy cloud model.展开更多
基金supported by the National Natural Science Foundation of China (Grant 11372159)
文摘The massively separated flow past triple cylin- ders (TriC) in tandem arrangement is simulated using the improved delayed detached-eddy simulation (IDDES) method based on the shear stress transport (SST) model, coupled with the high order adaptive dissipation scheme. The spacing between adjacent cylinders is sub-critical (1.435D). IDDES prediction of two cylinders (TC) with the same spacing is compared to experimental data for validation, and the numerical results agree well with the available measurements, except for the asymmetry in the gap region. The flow past TriC is investigated using the same method. Generally, the mean flow quantities past TriC, such as the velocity, pressure, and vorticity, are similar to the corresponding components of TC. However, the pressure fluctuations on the TriC surface are uniformly larger than those on TC. Meanwhile, the instantaneous flows past TriC are much more complex. The periodical blockage in the first gap region is found in the TriC case and leads to the up-and-down movement of shear layer in the second gap region.
基金support by the Youth Innovation Promotion Association of CASThe Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and Academia Sinica
文摘Line surveys of complex molecules with millimeter and sub-millimeter telescopes are important for probing the physical and chemical environments of massive star forming regions(MSFRs).We present a molecular line survey with the Submillimeter Array(SMA) in the frequency ranges of 220.3–222.3 GHz and 230.3–232.3 GHz toward G10.6-0.4, the brightest star forming core in the W31 complex. Ninety-nine transitions from 22 molecular species and their isotopologues are identified. The moment 0 images of typical molecules show a compact core which is concentrated at the continuum peak position. Based on the local thermodynamic equilibrium assumption, the molecular line data are modeled. The rotational temperatures of those molecular species range from 96 to 178 K and their column densities range from 2.0×1014to 3.7×1017cm-2. The observational data suggest that all complex molecules are located in a warm environment. Chemical environments of the molecules are discussed. We compared molecular abundances and gas temperatures in G10.6-0.4 with those in other MSFRs, and found that gas temperatures and fractional abundances of specific molecules in G10.6-0.4 are similar to the typical MSFR W51 North, suggesting that there are similar physical and chemical environments in these two MSFRs.
基金supported by the National Science Foundation of China (Grant Nos.11073046 and 11133008)
文摘We report the internal proper motions of 12 GHz methanol masers in mas-sive star-forming region G35.20-0.74 observed with the Very Long Baseline Array (VLBA) at four epochs spanning about 1.5 yr. Two groups of maser features were de-tected, groups A and B, and the latter that had a V-shaped spatial distribution is likely tracing the north outflow in G35.20-0.74. We present a three-dimensional model for the kinematics of these masers, by assuming the interstellar medium was blown by the stellar wind from the driving source (G35.2N) of the outflow. Adopting a position angle of ~ 81° for the main axis of the outflow from previous studies, we estimate an inclination of 35 ° ± 5.5°, a velocity of 8.1 ± 0.7 km s^-1 for the stellar wind along the main axis and an expansion speed gradient of 0.05 ± 0.016 km s^-1 AU^-1. From the model, we derive the age of the north outflow in G35.20-0.74 to be ~ 1.6 × 10^4 yr.
基金supported by the National Natural Science Foundation of China(Grant Nos.10673024,10733030,10703010 and 10621303)the National Basic Research Program of China-973 Program(2007CB815403)
文摘We present a multi-line study of the massive star-forming region IRAS 22506+5944. A new 6.7 GHz methanol maser was detected. ^12CO, 13CO, C180 and HCO+ J = 1 - 0 transition observations reveal a star-formation complex consisting mainly of two cores. The dominant core has a mass of more than 200 Mo, while the other one is only about 35 340. Both cores are obviously at different evolutionary stages. A 12CO energetic bipolar outflow was detected with an outflow mass of about 15 Mo.
基金The study is supported by Agence of International Science and Technology, Japan
文摘The Gacun Kuroko-type deposit, Southwestern China, is hosted in rhyolitic rocks associated with the underlying mafic rocks occurred in the - 1000 m deep fault - bounded basin within the intra -arc rifting zone which formed on the Triassic Yidun island - arc. Two vertically separated alteration systems are recognized: one is conformable or semiconformable alteration zone developed in - 150 m thick mafic unit 1-1.5 km below the massive sulfide ore body; the other is discordant alteration pipe directly surrounded around stockwork ore within rhyolitic unit. The lower conformable alteration zone extending for several kilometers along strike is characterized by silicification and epidotization which result in the development of quartz vein and quartz-epidote vein systems in mafic lava flows and replacement of primary minerals and groundmass in spilitized mafic volcanics and dikes by quartz, epidote - group minerals and sodic plagioclase. Sulfides often occur in the vein system and altered mafic volcanics. Quartz solubility relation indicates that silicification is a consequence of interaction of Si- saturated fluids with mafic rocks in a higher temperature system (T>340℃), intensifying by intrusion of mafic dike or high-level acidic magma chamber. The alteration pipe of diameter about 2 km shows a similar mineralogical zoning to Kuroko deposits of Japan. The sequence is quartz + hyalophane; sericite + chlorite + quartz and zeolite-like zones from core to margins of the pipe. The chlorite core only occurs in the root part of the alteration pipe and downwards transfers into epidote - chlorite and epidote - quartz vein swarm extending 500 m downwards. The felsic rocks away from the orebody and alteration pipe took place district-scale alteration, which has typical low-temperature mineral association: illite + albite + quartz + calcite. Whole -rock and quartz δ18O values indicate that district - scale alteration is a result of interaction of seawater with rocks at lower temperature (T<200℃)under water-dominated condition. However, the altered rocks from the pipe show remarkably δ18O enrichment, and bulk -rock δ18O values decreased gradually toward stockwork orebody from 15.1‰-l5. 75‰ in zeolite-like zone and 12. 05‰-14. 2‰ in sericite - quartz zone to 11.3 ‰ - 14. 4‰ in quartz - hyalophane zone. The filled temperatures of fluid inclusions in quartz and sphalerite lie in the ranges of 280 -320 ℃ for quartz - hyalophane zone and 250 ℃ to 297 ℃ for sericite-quartz zone. The estimated δ18O values of hydrothermal fluids are 7. 98‰ and3.2‰, respectively, based on quartz δ18O data in the deposit. The lower conformable alteration is considered to be approximately coeval with the alteration pipe, based on the SiO2 concentration in the fluids, which restrict the main fluid - rock reaction zone to be located in mafic horizon by quartz barometer, and metal element flux calculation and sulfide - epidote vein system developed both in alteration systems. High - salinity fluid inclusions in gangue quartz (>8% eq. NaCl) from stockwork ore and in quartz phenocryst (>40% eq. NaCl) in footwall rhyolite strongly suggest the existence of hot-saline brine to react with mafic complex and leach metal components, which probably originates mainly from magmatic fluid derived from high-level acidic magma chamber. The brine layer located in mafic unit possibly heats and drives the overlying single -pass convective seawater reacting with felsic rocks. The 'density window' may be expected to occur on the interface between seawater and brine layer, when the brine becomes to be gravitationally instability by the turbulent entrainment of seawater during magmatic and/or tectonic activities. The sulfide mineralization and alteration pipe is inter preted as an effect of the 'density window' through which the mixed fluids of brine with seawater adiabatically discharges upwards.
基金supportedby the National Key R&D Program of China (No.2017YFA0402701)by the National Natural Science Foundation of China (Grant Nos. 11373026 and11433004)+2 种基金the Joint Research Fund in Astronomy(U1631237) under cooperative agreement between the National Natural Science Foundation of China and Chinese Academy of Sciencesby the Top TalentsProgram of Yunnan Province (2015HA030)by Yunnan University’s Research Innovation Fund for Graduate Students
文摘Previous observations have revealed an accretion disk and outflow motion in the high-mass starforming region G192.16–3.84, but collapse has not been reported before. Here we present molecular line and continuum observations toward the massive core G192.16–3.84 with the Submillimeter Array. C18 O(2–1) and HCO+(3–2) lines show pronounced blue profiles, indicating gas infalling in this region. This is the first time that infall motion has been reported in the G192.16–3.84 core. Two-layer model fitting gives infall velocities of 2.0±0.2 and 2.8±0.1 km s-1. Assuming that the cloud core follows a power-law density profile(ρ∝ r1.5), the corresponding mass infall rates are(4.7±1.7)×10-3 and(6.6±2.1)×10-3 M⊙yr-1 for C18 O(2–1) and HCO+(3–2), respectively. The derived infall rates are in agreement with the turbulent core model and those in other high-mass star-forming regions, suggesting that high accretion rate is a general requirement for forming a massive star.
基金the NationalNatural Science Foundation of China (NSFC) this work is also partly supported by the Ministryof Science and Tec
文摘In this paper, we investigate the problem of supersonic convection caused by the application of the usual Mixing Length Theory (MLT), and give a modification to the original expression of the MLT. In the case of the usual MLT, a zone of supersonic convection exists when the stellar model goes into yellow-red supergiant phase. When the modification is applied, the models of late type supergiants possess shallower convective envelopes for a given temperature compared with the normal formalism of the MLT. Therefore the stellar models made with our new formalism move to lower effective temperature by 100-400 K depending on the luminosity of the star. Such a modification does not affect the convective envelope structure of lower luminosity late type stars, as both expressions of the MLT give the same result. In these stars.
基金This work received generous support from the National Natural Science Foundation of China(Grant Nos.11763007,11863005,11803026 and U2031204)We would also like to express our gratitude to the Natural Science Foundation of Xinjiang(No.2021D01C075)the Tianshan Youth Project of Xinjiang(No.2017Q014).
文摘Employing the stellar evolution code Modules for Experiments in Stellar Astrophysics(MESA),we calculate yields of heavy elements from massive stars via stellar wind and core−collapse supernova(CCSN)ejecta to the interstellar medium(ISM).In our models,the initial masses(Mini)of massive stars are taken from 13 to 80 M⊙,their initial rotational velocities(V)are 0,300 and 500 km s^(−1),and their metallicities are[Fe/H]=−3,−2,−1 and 0.The yields of heavy elements coming from stellar winds are mainly affected by stellar rotation which changes the chemical abundances of stellar surfaces via chemically homogeneous evolution,and enhances mass-loss rate.We estimate that the stellar wind can produce heavy element yields of about 10^(−2)(for low metallicity models)to a mass of severalM⊙(for low metallicity and rapid rotation models).The yields of heavy elements produced by CCSN ejecta also depend on the large amount of remnantmass which is mainly determined by the mass of the CO-core.Our models calculate that the yields of heavy elements produced by CCSN ejecta can get up to several M⊙.Compared with stellar wind,CCSN ejecta has a greater contribution to the heavy elements in ISM.We also compare the 56Ni yields calculated in this work with the observational estimate.Our models only explain the 56Ni masses produced by faint SNe or normal SNe with progenitor mass lower than about 25 M⊙,and greatly underestimate the 56Ni masses produced by stars with masses higher than about 30M⊙.
基金supported by a grant from the Israel Science Foundation(769/20)。
文摘I identify a point-symmetric structure in recently published VLT/MUSE velocity maps of different elements in a plane along the line of sight at the center of the supernova remnant SNR 0540-69.3,and argue that jittering jets that exploded this core collapse supernova shaped this point-symmetric structure.The four pairs of two opposite clumps that compose this point symmetric structure suggest that two to four pairs of jittering jets shaped the inner ejecta in this plane.In addition,intensity images of several spectral lines reveal a faint strip(the main jet-axis)that is part of this plane of jittering jets and its similarity to morphological features in a few other SNRs and in some planetary nebulae further suggests shaping by jets.My interpretation implies that in addition to instabilities,jets also mix elements in the ejecta of core collapse supernovae.Based on the point-symmetric structure and under the assumption that jittering jets exploded this supernova,I estimate the component of the neutron star natal kick velocity on the plane of the sky to be■235 km s^(-1),and at an angle of■47°to the direction of the main jet-axis.I analyze this natal kick direction together with 12 other SNRs in the frame of the jittering jets explosion mechanism.
基金Supported by the National Natural Science Foundation of China.
文摘The excitation of H2O masers usually needs very high density gas,hence it can serve as a marker of dense gas in HⅡ region. We selected a sample of H2O maser sources from Plume et al. (four with, and four without detected CS(J = 7 - 6) emission), and observed them in ^13CO(J=1-0) and C^18O (J=1-0). C^18O (J=1-0) emission was detected only in three of the sources with detected CS(J=7-6) emission. An analysis combined with some data in the literature suggests that these dense cores may be located at different evolutionary stages. Multi-line observation study may provide us clues on the evolution of massive star forming regions and the massive stars themselves.
基金the Swami Vivekananda Merit-cum-Means Scholarship(SVMCM)for financial support for this research。
文摘The observation of oxygen(O)-and nitrogen(N)-bearing molecules gives an idea about the complex prebiotic chemistry in the interstellar medium.Recent millimeter and submillimeter wavelength observations have shown the presence of complex O-and N-bearing molecules in the star formation regions.So,the investigation of those molecules is crucial to understanding the chemical complexity in the star-forming regions.In this article,we present the identification of the rotational emission lines of N-bearing molecules ethyl cyanide(C_(2)H_(5)CN)and cyanoacetylene(HC_(3)N),and O-bearing molecule methyl formate(CH_(3)OCHO)toward high-mass protostar IRAS18089–1732 using the Atacama Compact Array.We also detected the emission lines of both the N-and O-bearing molecule formamide(NH_(2)CHO)in the envelope of IRAS 18089–1732.We have detected the v=0 and 1 state rotational emission lines of CH_(3)OCHO.We also detected the two vibrationally excited states of HC_(3)N(v7=1 and v7=2).The estimated fractional abundances of C_(2)H_(5)CN,HC_(3)N(v7=1),HC_(3)N(v7=2),and NH_(2)CHO toward IRAS 18089–1732 are(1.40±0.5)×10^(-10),(7.5±0.7)×10^(-11),(3.1±0.4)×10^(-11),and(6.25±0.82)×10^(-11)respectively.Similarly,the estimated fractional abundances of CH_(3)OCHO(v=0)and CH_(3)OCHO(v=1)are(1.90±0.9)×10^(-9)and(8.90±0.8)×10^(-10),respectively.We also created the integrated emission maps of the detected molecules,and the observed molecules may have originated from the extended envelope of the protostar.We show that C_(2)H_(5)CNand HC_(3)N are most probably formed via the subsequential hydrogenation of the CH_(2)CHCNand the reaction between C_(2)H_(2)and CN on the grain surface of IRAS 18089–1732.We found that NH_(2)CHO is probably produced due to the reaction between NH_(2)and H_(2)CO in the gas phase.Similarly,CH_(3)OCHO is possibly created via the reaction between radical CH_(3)O and radical HCO on the grain surface of IRAS 18089–1732.
文摘In star formation regions,the complex organic molecules(COMs)that contain peptide bonds(-NH-C(=O)-)play a major role in the metabolic process because-NH-C(=O)-is connected to amino acids(R-CHNH_2-COOH).Over the past few decades,many COMs containing peptide-like bonds have been detected in hot molecular cores(HMCs),hot corinos,and cold molecular clouds,however,their prebiotic chemistry is poorly understood.We present the first detection of the rotational emission lines of formamide(NH_2CHO)and isocyanic acid(HNCO),which contain peptide-like bonds toward the chemically rich HMC G358.93-0.03 MM1,using high-resolution and high-sensitivity Atacama Large Millimeter/submillimeter Array bands 6 and 7.We estimate that the column densities of NH_2CHO and HNCO toward G358.93-0.03 MM1 are(2.80±0.29)×10~(15)cm~(-2)and(1.80±0.42)×10~(16)cm~(-2)with excitation temperatures of 165±21 K and 170±32 K,respectively.The fractional abundances of NH_2CHO and HNCO toward G358.93-0.03 MM1 are(9.03±1.44)×10~(-10)and(5.80±2.09)×10^(-9).We compare the estimated abundances of NH_2CHO and HNCO with the existing threephase warm-up chemical model abundance values and notice that the observed and modeled abundances are very close.We conclude that NH_2CHO is produced by the reaction of NH_2and H_2CO in the gas phase toward G358.93-0.03 MM1.Likewise,HNCO is produced on the surface of grains by the reaction of NH and CO toward G358.93-0.03 MM1.We also find that NH_2CHO and HNCO are chemically linked toward G358.93-0.03 MM1.
文摘Based on Kohler’s ternary solution model and Miedemaa’s model for calculating the heats of formation-△Hij of binary Systems, the integral equation has ben established for calculating the activity coefficients in ternarysolution. With the equation, the activity coefficients in Ti-15-3 melt have been calculated. The results show that allof components’ activity coefficients are less than 1, in other wolds, compared with ideal solution, all components takeon a negative deviation. At 2000K, the activity coefficients in Ti-15-3 melt are shown as: about 0.9 for Ti, about0.85 for V, about 0. 1 for Al, aboaut 0.5 for Cr and about 0.23 for Sn. me addition of V lowers the activity coefficient of Ti, but raise the ones of Al, Cr and Sn. These results can be directly used to calculate the evaporation loss ofAl, Cr and Sn during the ISM(Induction Skull Melting) process and at the same time estimate the reactivity betweenTi-15-3 melt and refractory during the cast production.
基金a RGC grant of the Hong Kong Government and the National Natural Science Foundation of China.
文摘Gamma-ray bursts (GRBs) are the most intense transient gamma-ray events in the sky; this, together with the strong evidence (the isotropic and inhomogeneous distribution of GRBs detected by BASTE) that they are located at cosmological distances, makes them the most energetic events ever known. For example, the observed radiation energies of some GRBs are equivalent to the total convertion into radiation of the mass energy of more than one solar mass. This is thousand times stronger than the energy of a supernova explosion. Some unconventional energy mechanism and extremely high conversion efficiency for these mysterious events are required. The discovery of host galaxies and association with supernovae at cosmological distances by the recently launched satellite of BeppoSAX and ground based radio and optical telescopes in GRB afterglow provides further support to the cosmological origin of GRBs and put strong constraints on their central engine. It is the aim of this article to review the possible central engines, energy mechanisms, dynamical and spectral evolution of GRBs, especially focusing on the afterglows in multi-wavebands.
基金Supported by the National Natural Science Foundation of China.
文摘Observations on relativistic jets in radio galaxies, active galactic nuclei, and 'microquasars' revealed that many of these outflows are cylindrical, not conical. So it is worthwhile to investigate the evolution of cylindrical jets in gamma-ray bursts. We discuss afterglows from cylindrical jets in a wind environment. Numerical results as well as analytic solutions in some special cases are presented. Our light curves are steeper compared to those in the homogeneous interstellar medium case, carefully considered by Cheng, Huang & Lu. We conclude that some afterglows, used to be interpreted as isotropic fireballs in a wind environment, can be fitted as well by cylindrical jets interacting with a wind.
基金the National Natural Science Foundation of China.
文摘High energy emission (〉 tens MeV) of Gamma-Ray Bursts (GRBs) provides an important clue on the physical processes occurring in GRBs that may be correlated with the GRB early afterglow. A shallow decline phase has been well identified in about half of Swift Gamma-ray Burst x-ray afterglows. The widely considered interpretation inv.olves a significant energy injection and possibly time-evolving shock parameter(s). We calculate the synchrotron-self-Compton (SSC) radiation of such an external forward shock and show that it could explain the well-known long term high energy (i.e., tens MeV to GeV) afterglow of GRB 940217. We propose that cooperation of Swift and GLAST will help to reveal the nature of GRBs.
基金support of the RFBR grants(projects 15–02–06098,16–02–00761 and18–02–00660)support of the Russian Science Foundation grant(project 17–12–01256)
文摘In order to search for intensity fluctuations on the HCN(1-0) and HCO+(1-0) line pro- files, which could arise due to possible small-scale inhomogeneous structure, long-term observations of high-mass star-forming cores S140 and S199 were carried out. The data were processed by the Fourier filtering method. Line temperature fluctuations that exceed the noise level were detected. Assuming the cores consist of a large number of randomly moving small thermal fragments, the total number of frag- ments is - 4 × 106 for the region with linear size - 0.1 pc in S140 and - 106 for the region with linear size - 0.3 pc in S 199. Physical parameters of fragments in S 140 were obtained from detailed modeling of the HCN emission in the framework of the clumpy cloud model.