In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical s...In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical solutions.A rather complete design of unsourced multiple access is proposed in which two key parts:a compressed sensing module for active user detection,and a sparse interleaver-division multiple access(SIDMA)module are simulated side by side on a same platform at balanced signal to noise ratio(SNR)operating points.With a proper combination of compressed sensing matrix,a convolutional encoder,receiver algorithms,the simulated performance results appear superior to the state-of-the-art benchmark,yet with relatively less complicated processing.展开更多
The extra-large scale multiple-input multiple-output(XL-MIMO)for the beyond fifth/sixth generation mobile communications is a promising technology to provide Tbps data transmission and stable access service.However,th...The extra-large scale multiple-input multiple-output(XL-MIMO)for the beyond fifth/sixth generation mobile communications is a promising technology to provide Tbps data transmission and stable access service.However,the extremely large antenna array aperture arouses the channel near-field effect,resulting in the deteriorated data rate and other challenges in the practice communication systems.Meanwhile,multi-panel MIMO technology has attracted extensive attention due to its flexible configuration,low hardware cost,and wider coverage.By combining the XL-MIMO and multi-panel array structure,we construct multi-panel XL-MIMO and apply it to massive Internet of Things(IoT)access.First,we model the multi-panel XL-MIMO-based near-field channels for massive IoT access scenarios,where the electromagnetic waves corresponding to different panels have different angles of arrival/departure(AoAs/AoDs).Then,by exploiting the sparsity of the near-field massive IoT access channels,we formulate a compressed sensing based joint active user detection(AUD)and channel estimation(CE)problem which is solved by AMP-EM-MMV algorithm.The simulation results exhibit the superiority of the AMP-EM-MMV based joint AUD and CE scheme over the baseline algorithms.展开更多
The massive Internet of Things(IoT)comprises different gateways(GW)covering a given region of a massive number of connected devices with sensors.In IoT networks,transmission interference is observed when different sen...The massive Internet of Things(IoT)comprises different gateways(GW)covering a given region of a massive number of connected devices with sensors.In IoT networks,transmission interference is observed when different sensor devices(SD)try to send information to a single GW.This is mitigated by allotting various channels to adjoining GWs.Furthermore,SDs are permitted to associate with anyGWin a network,naturally choosing the one with a higher received signal strength indicator(RSSI),regardless of whether it is the ideal choice for network execution.Finding an appropriate GW to optimize the performance of IoT systems is a difficult task given the complicated conditions among GWs and SDs.Recently,in remote IoT networks,the utilization of machine learning(ML)strategies has arisen as a viable answer to determine the effect of various models in the system,and reinforcement learning(RL)is one of these ML techniques.Therefore,this paper proposes the use of an RL algorithm for GW determination and association in IoT networks.For this purpose,this study allows GWs and SDs with intelligence,through executing the multi-armed bandit(MAB)calculation,to investigate and determine the optimal GW with which to associate.In this paper,rigorous mathematical calculations are performed for this purpose and evaluate our proposed mechanism over randomly generated situations,which include different IoT network topologies.The evaluation results indicate that our intelligentMAB-based mechanism enhances the association as compared to state-of-the-art(RSSI-based)and related research approaches.展开更多
The massive development of internet of things(IoT)technologies is gaining momentum across all areas of their possible deployment—spanning from Industry 4.0 to eHealth,smart city,agriculture or waste management.This o...The massive development of internet of things(IoT)technologies is gaining momentum across all areas of their possible deployment—spanning from Industry 4.0 to eHealth,smart city,agriculture or waste management.This ongoing development is further pushed forward by the gradual deployment of 5G networks.With 5G capable smart devices,it will be possible to transfer more data with shorter latency thereby resulting in exciting new use cases such as Massive IoT.Massive-IoT(low-power wide area network-LPWAN)enables improved network coverage,long device operational lifetime and a high density of connections.Despite all the advantages of massive-IoT technology,there are certain cases where the original concept cannot be used.Among them are dangerous explosive environments or issues caused by subsurface deployment(operation during winter months or dense greenery).This article presents the concept of a hybrid solution of IoT LoRaWAN(long range wide area network)/IRC-VLC(infrared communication,visible light communication)technology,which combines advantages of both technologies according to the deployment scenario.展开更多
Ultra-dense low earth orbit(LEO)integrated satellite-terrestrial network(ULISTN)has become an emerging paradigm to support massive access of Internet of things(IoT)in beyond fifth generation mobile networks(B5G).In UL...Ultra-dense low earth orbit(LEO)integrated satellite-terrestrial network(ULISTN)has become an emerging paradigm to support massive access of Internet of things(IoT)in beyond fifth generation mobile networks(B5G).In ULISTN,there are two communication modes:cellular mode and satellite mode,where IoT users assessing terrestrial small base stations(TSBSs)and terrestrial-satellite terminals(TSTs)respectively.However,how to optimize the network performance and guarantee self-interests of the operator and IoT users in ULISTN is a challenging issue.In this paper,we propose a cybertwin-assisted joint mode selection and dynamic pricing(JMSDP)scheme for effective network management in ULISTN,where cybertwin serves as the intelligent agent.In JMSDP,the operator determines optimal access prices of TSBSs and TSTs,while each user selects the access mode according to access prices.Specifically,the operator conducts the Stackelberg game aiming at maximizing average throughput depending on the mode selection results of IoT users.Meanwhile,IoT users as followers adopt the evolutionary game to choose an access mode based on the access prices provided by the operator.Simulation results show that the proposed JMSDP can improve the average throughput and reduce the delay effectively,comparing with random access(RA)and maximum rate access.展开更多
文摘In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical solutions.A rather complete design of unsourced multiple access is proposed in which two key parts:a compressed sensing module for active user detection,and a sparse interleaver-division multiple access(SIDMA)module are simulated side by side on a same platform at balanced signal to noise ratio(SNR)operating points.With a proper combination of compressed sensing matrix,a convolutional encoder,receiver algorithms,the simulated performance results appear superior to the state-of-the-art benchmark,yet with relatively less complicated processing.
基金supported by National Key Research and Development Program of China under Grants 2021YFB1600500,2021YFB3201502,and 2022YFB3207704Natural Science Foundation of China(NSFC)under Grants U2233216,62071044,61827901,62088101 and 62201056+1 种基金supported by Shandong Province Natural Science Foundation under Grant ZR2022YQ62supported by Beijing Nova Program,Beijing Institute of Technology Research Fund Program for Young Scholars under grant XSQD-202121009.
文摘The extra-large scale multiple-input multiple-output(XL-MIMO)for the beyond fifth/sixth generation mobile communications is a promising technology to provide Tbps data transmission and stable access service.However,the extremely large antenna array aperture arouses the channel near-field effect,resulting in the deteriorated data rate and other challenges in the practice communication systems.Meanwhile,multi-panel MIMO technology has attracted extensive attention due to its flexible configuration,low hardware cost,and wider coverage.By combining the XL-MIMO and multi-panel array structure,we construct multi-panel XL-MIMO and apply it to massive Internet of Things(IoT)access.First,we model the multi-panel XL-MIMO-based near-field channels for massive IoT access scenarios,where the electromagnetic waves corresponding to different panels have different angles of arrival/departure(AoAs/AoDs).Then,by exploiting the sparsity of the near-field massive IoT access channels,we formulate a compressed sensing based joint active user detection(AUD)and channel estimation(CE)problem which is solved by AMP-EM-MMV algorithm.The simulation results exhibit the superiority of the AMP-EM-MMV based joint AUD and CE scheme over the baseline algorithms.
基金Funded by Institutional Fund Projects underGrant No.RG-2-611-42 by Ministry of Education and King Abdulaziz University,Jeddah,Saudi Arabia(A.O.A.).
文摘The massive Internet of Things(IoT)comprises different gateways(GW)covering a given region of a massive number of connected devices with sensors.In IoT networks,transmission interference is observed when different sensor devices(SD)try to send information to a single GW.This is mitigated by allotting various channels to adjoining GWs.Furthermore,SDs are permitted to associate with anyGWin a network,naturally choosing the one with a higher received signal strength indicator(RSSI),regardless of whether it is the ideal choice for network execution.Finding an appropriate GW to optimize the performance of IoT systems is a difficult task given the complicated conditions among GWs and SDs.Recently,in remote IoT networks,the utilization of machine learning(ML)strategies has arisen as a viable answer to determine the effect of various models in the system,and reinforcement learning(RL)is one of these ML techniques.Therefore,this paper proposes the use of an RL algorithm for GW determination and association in IoT networks.For this purpose,this study allows GWs and SDs with intelligence,through executing the multi-armed bandit(MAB)calculation,to investigate and determine the optimal GW with which to associate.In this paper,rigorous mathematical calculations are performed for this purpose and evaluate our proposed mechanism over randomly generated situations,which include different IoT network topologies.The evaluation results indicate that our intelligentMAB-based mechanism enhances the association as compared to state-of-the-art(RSSI-based)and related research approaches.
基金This work was supported by the European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project,Project Number CZ.02.1.01/0.0/0.0/16_-019/0000867 within the Operational Programme Research,Development and Education,and in part by the Ministry of Education of the Czech Republic under Project SP2021/32.
文摘The massive development of internet of things(IoT)technologies is gaining momentum across all areas of their possible deployment—spanning from Industry 4.0 to eHealth,smart city,agriculture or waste management.This ongoing development is further pushed forward by the gradual deployment of 5G networks.With 5G capable smart devices,it will be possible to transfer more data with shorter latency thereby resulting in exciting new use cases such as Massive IoT.Massive-IoT(low-power wide area network-LPWAN)enables improved network coverage,long device operational lifetime and a high density of connections.Despite all the advantages of massive-IoT technology,there are certain cases where the original concept cannot be used.Among them are dangerous explosive environments or issues caused by subsurface deployment(operation during winter months or dense greenery).This article presents the concept of a hybrid solution of IoT LoRaWAN(long range wide area network)/IRC-VLC(infrared communication,visible light communication)technology,which combines advantages of both technologies according to the deployment scenario.
基金This work was supported in part by the National Key R&D Program of China under Grant 2020YFB1806104in part by the Natural Science Fund for Distinguished Young Scholars of Jiangsu Province under Grant BK20220067in part by the Natural Science Foundation of China under Grant 62001259.
文摘Ultra-dense low earth orbit(LEO)integrated satellite-terrestrial network(ULISTN)has become an emerging paradigm to support massive access of Internet of things(IoT)in beyond fifth generation mobile networks(B5G).In ULISTN,there are two communication modes:cellular mode and satellite mode,where IoT users assessing terrestrial small base stations(TSBSs)and terrestrial-satellite terminals(TSTs)respectively.However,how to optimize the network performance and guarantee self-interests of the operator and IoT users in ULISTN is a challenging issue.In this paper,we propose a cybertwin-assisted joint mode selection and dynamic pricing(JMSDP)scheme for effective network management in ULISTN,where cybertwin serves as the intelligent agent.In JMSDP,the operator determines optimal access prices of TSBSs and TSTs,while each user selects the access mode according to access prices.Specifically,the operator conducts the Stackelberg game aiming at maximizing average throughput depending on the mode selection results of IoT users.Meanwhile,IoT users as followers adopt the evolutionary game to choose an access mode based on the access prices provided by the operator.Simulation results show that the proposed JMSDP can improve the average throughput and reduce the delay effectively,comparing with random access(RA)and maximum rate access.