A contact bolt model is proposed as a new modeling technique to investigate the complex structure with bolted joints for modal analysis and compared with the coupled bolt model, and the test results are given. Among t...A contact bolt model is proposed as a new modeling technique to investigate the complex structure with bolted joints for modal analysis and compared with the coupled bolt model, and the test results are given. Among these models, the coupled bolt model provides the best accurate responses compared with the experimental results. The contact bolt model shows the best effectiveness and usefulness in view of operational time. The bolt models proposed in this study are adopted for a dynamic characteristic analysis of a large diesel engine consisting of several parts which are connected by many bolts. The dynamic behavior of the entire engine structure was investigated by experiment. The coupled bolt model and the contact bolt model were applied to model the assembly of engine with high preload. The experimental results are in good agreement with the finite element method (FEM) results. Compared with the other models, the contact bolt model presented in this paper is more effective and useful in view of operational time and experience of analysts.展开更多
The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connec...The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connecting rod for weight optimisation without losing the strength of the connecting rod. It considered modal and thermal analyses to investigate the suitability of the material for connecting rod design. The parameters that were considered under the modal analysis were: total deformation, and natural frequency, while the thermal analysis looked at the temperature distribution, total heat flux and directional heat flux of the four connecting rods made with titanium alloy, grey cast iron, structural steel and aluminium 7075 alloy respectively. The connecting rod was modelled using Autodesk inventor2017 software using the calculated parameters. The steady-state thermal analysis was used to determine the induced heat flux and directional heat flux. The study found that Aluminium 7075 alloy deformed more than the remaining three other materials but has superior qualities in terms of vibrational natural frequency, total heat flux and lightweight compared to structural steel, grey cast iron and titanium alloy.展开更多
The “Huang gua” melons were measured for their physical properties including firmness and static elastic modulus. The vibrational characteristics of fruits and vegetables are governed by their elastic modulus (firmn...The “Huang gua” melons were measured for their physical properties including firmness and static elastic modulus. The vibrational characteristics of fruits and vegetables are governed by their elastic modulus (firmness), mass, and geometry. Therefore, it is possible to evaluate firmness of fruits and vegetables based on their vibrational characteristics. Analysis of the vibration responses of a fruit is suggested for measuring elastic properties (Firmness) non-destructively. The impulse response method is often used to measure firmness of fruits. The fruit was excited using three types of balls (wooden, steel and rubber) and the vibration is detected by an accelerometer. The Instron device was used to measure the static elastic modulus of the inner, middle and outer portions of melon flesh. Finite element (FE) technique was used to determine the optimum excitation location of the chosen measurement sensor and to analyze the mode shape fruits. Four types of mode shapes (torsional or flexural mode shape, first-type, second-type spherical mode and breathing mode shape) were found. Finite element simulation results agreed well with experimental results. Correlation between the firmness and resonant frequency (r2=0.91) and between the resonant frequency and stiffness factor (r2=0.74) existed. The optimum location and suitable direction for excitation and response measurement on the fruit were suggested.展开更多
To control the vibration level of ships under construction,MSC Software’s Patran&Nastran modeling solutions can be used to establish a detailed finite element model of a new manned submersible support mother ship...To control the vibration level of ships under construction,MSC Software’s Patran&Nastran modeling solutions can be used to establish a detailed finite element model of a new manned submersible support mother ship based on a line drawing,including the deck layout,bulkhead section,and stiffener distribution.After a comprehensive analysis of the ship simulation conditions,boundaries,and excitation forces of the main operating equipment,modal analysis and calculation of the ship vibration can be conducted.In this study,we calculated and analyzed the vibration response of key points in the stern area of the ship’s main deck and the submersible warehouse area under design loading working conditions.We then analyzed the vibration response of typical decks(including the compass deck,steering deck,captain’s deck,forecastle deck,and main deck)under the main excitation forces and moments(such as the full swing pod and generator sets).The analysis results showed that under DESIDEP working conditions,the vibration of each deck and key areas of the support mother ship could meet the vibration code requirements of the ship’s preliminary design(using the pod excitation and generator sets).Similarly,the vibration response of a scientific research ship under other loading conditions also met the requirements of the code and provided data support for a comprehensive understanding of the ship’s vibration and noise levels.Using actual vibration measurements,the accuracy of the vibration level simulations using finite element modeling was verified,the vibration of each area of the ship comfortably meeting the requirements of the China Classification Society.展开更多
A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and ...A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.展开更多
In recent years, inflatable structures have been a subject of interest for space applications such as communication antenna, solar thermal propulsion and entry/landing systems. The inflatable structures characterized ...In recent years, inflatable structures have been a subject of interest for space applications such as communication antenna, solar thermal propulsion and entry/landing systems. The inflatable structures characterized by high strength-to-mass ratios, minimal stowage volume, which makes them suitable for cost-effective large space structures. A typical example for the inflatable structure is the inflated torus which often used in order to provide structure support. In this study, our main focus is to understand the dynamic characteristics of an inflated torus in order to formulate an accurate mathematical model suitable for active vibration control applications. A commercial finite element package, ANSYS, is used to model the inflated torus. To verify the model the obtained frequencies and mode shapes are compared with the published results, which are derived using analytical approach, the verification shows a good agreement between the FEM and the analytical results. Based on the verified model, parametric study was investigated; the material thickness increase causes the natural frequencies decrease, while the increase of the inflation pressure simply results in stiffening the ring, which means that the natural frequency increased. The FEM analysis gives an easy and fast way for the vibration analysis of the structures compared with the complicated analytical solutions.展开更多
To improve the performance of the 2 m telescope, the optimum design is applied to the telescope assemble. Referring to the telescope assemble with the dimetric truss, a group of reasonable sizes of the telescope assem...To improve the performance of the 2 m telescope, the optimum design is applied to the telescope assemble. Referring to the telescope assemble with the dimetric truss, a group of reasonable sizes of the telescope assemble are found by optimization methods and modal analysis, which will raise the resonant frequency by 4.21 %. As a result, the telescope assemble is less likely to resonate. Besides, the dynamic response module in ANSYS is utilized to analyze the modal type, harmonic vibration response and random vibration response of the telescope assemble. By the calculation of ANSYS, finite dement analysis (FEA) method proves that the performance of the telescope assemble is mildly enhanced by means of optimum design.展开更多
The construction of seaside facilities is a hot topic in the field of ocean engineering.In this paper,a new type of floating breakwater is designed by 3D-CAD geometric modeling.Based on the vibration theory and finite...The construction of seaside facilities is a hot topic in the field of ocean engineering.In this paper,a new type of floating breakwater is designed by 3D-CAD geometric modeling.Based on the vibration theory and finite element tech-nology,the floating breakwater model is optimized,and the modal analysis of the structure with the bracket as main body and blades as functional attachments is carried out.Natural frequencies and mode shapes of the blades are fi rst calculated,and the effects of the natural frequencies in both dry and wet conditions are taken into account.Modal analysis and harmonic response analysis of the bracket with different lengths by removing the blades are also carried out,and the different var-iations of the natural frequencies between several bracket units are compared.The responses of the key position of the bracket under different loads and different bracket lengths are analyzed.The influence of liquid on the natural frequency of the blades and the influence of the length of the bracket on the natural fre-quency of the bracket are discussed in the fluid-solid coupling state.Research in this paper provides a data basis for the safety assessment of the breakwater construction.展开更多
An?ultrasonic compound horn is designed and manufactured, and the horn is analyzed by wave equation, finite element method and test. The modal frequencies and frequencies of the first and second longitudinal vibration...An?ultrasonic compound horn is designed and manufactured, and the horn is analyzed by wave equation, finite element method and test. The modal frequencies and frequencies of the first and second longitudinal vibration of the horn are obtained by the finite element analysis. The horn is made and modal testing is carried out. The modal frequencies of the first and second longitudinal vibration are obtained respectively. The test results are in good agreement with the theoretical calculation. Experimental results show the maximum amplitude of the horn can reach 9?nm with applied excitation voltage of amplitude 7?V and frequency 21,450?Hz, when the amplitude of voltage increases?to 80?V, the horn of maximum amplitude reaches?23 μm. The maximum amplitude of the horn is approximately proportional to the amplitude of excitation voltage. The horn has the characteristics of high sensitivity and large amplitude, and can be used in ultrasonic machining and other fields.展开更多
The vibration problem during the operation of rice transplanters is the most common phenomenon.In order that the static and dynamic characteristics of the rice transplanter chassis can meet the requirements of more st...The vibration problem during the operation of rice transplanters is the most common phenomenon.In order that the static and dynamic characteristics of the rice transplanter chassis can meet the requirements of more stable operation,the research took the 2ZG-6DK rice transplanter as the research object to carry out a vibration reduction optimization study.In the research,the Pro/Engineer 5.0 software was first used to model the chassis of the rice transplanter.The constructed finite element model was revised by using the structural parameter revision method and the mixed penalty function method.The model was imported into ANSYS Workbench to solve the modal frequency and vibration shape of the rice transplanter chassis.Based on the MAC(modal assurance criterion)criterion,modal tests were carried out to verify the accuracy of the finite element theoretical analysis.Through the analysis of the characteristics of the external excitation frequency,the chassis is structurally optimized to avoid resonance caused by the natural frequency of the chassis falling within the road excitation frequency range.The final optimization results showed that the first four orders of modal frequencies of the chassis were adjusted to 32.083 Hz,33.751 Hz,42.517 Hz,and 50.362 Hz,respectively,in the case that the chassis mass was increased by 6.714 kg(8.8%).They all avoid the range of road excitation frequency(10-30 Hz)so that the rice transplanter can effectively avoid the resonance phenomenon during operation.This study can provide a reference for the design and optimization of the chassis structure of transplanter.展开更多
In this paper, the finite element analysis software (ANSYS) is applied to the modal analysis of a ZJ30/1700CZ's drilling machine derrick under a natural condition and a loaded condition, respectively. The precedin...In this paper, the finite element analysis software (ANSYS) is applied to the modal analysis of a ZJ30/1700CZ's drilling machine derrick under a natural condition and a loaded condition, respectively. The preceding nine step natural frequencies and the corresponding mode shapes of the derrick are calculated. By means of the comparison of the natural frequency of the derrick with the design work frequency of the drilling machine and the analysis of the step mode shape of the derrick, the drilling machine derrick structure design is proved to be correct.展开更多
Stress and modal analyses are performed on an ultrasonic vibration system by means of a 3-dimensional finite element computation and dynamic modal analysis code "Algor" The system consists of an edge-cracked...Stress and modal analyses are performed on an ultrasonic vibration system by means of a 3-dimensional finite element computation and dynamic modal analysis code "Algor" The system consists of an edge-cracked specimen linked elastically with one or two amplifying horns which come into resonant longitudinal vibration at 20kHz.Operating principle of the ultrasonic fatigue machines and experimental procedures for ultrasonic fatigue crack growth studies are briefly presented.展开更多
The chassis frame of a heavy lectra haul is analysed by both modal experiment method and finite element method (FEM ) . The first ten order modal parameters of the chassis frame have been obtained satisfactorily. Thes...The chassis frame of a heavy lectra haul is analysed by both modal experiment method and finite element method (FEM ) . The first ten order modal parameters of the chassis frame have been obtained satisfactorily. These parameters have important reference value in designing the chassis frame properly and provide a necessary basis for the fault diagnostics of the truck.展开更多
In order to improve the dynamic stability of precision instruments during the design process, a compositive design method based on modal analysis of structure is proposed. With uniform boundary conditions and material...In order to improve the dynamic stability of precision instruments during the design process, a compositive design method based on modal analysis of structure is proposed. With uniform boundary conditions and material characters, the results of Finite Element Analysis (FEA) vary with models. It should be checked whether the model is correctly simplified. Modal experiments can be used for such purpose. The method combines the high efficiency and agility of FEA with the reliability and accuracy of experiments, and avoids the drawbacks of FEA or experiments, such as uncertainty of FEA and high cost of experiments. Taking rotor frame structure as an example, this method is applied as follows: First the modal characters of structure are analyzed with FEA, and then the natural frequencies of the structure are tested by experiments to check the reliability of FEA method, and finally the design scheme is optimized by modifying structure parameters with confirmed FEA.展开更多
In order to study the mechanical properties and the dynamic performance of torque converter,to reduce the vibration and noise during the operation and to improve the stability,a 215 mm hydraulic torque converter is ta...In order to study the mechanical properties and the dynamic performance of torque converter,to reduce the vibration and noise during the operation and to improve the stability,a 215 mm hydraulic torque converter is taken as the research object,and modal analyses are performed based on the finite element method.The weak parts of the impeller structure are obtained after calculating the models of the impeller and turbine without prestress.The variation of the modal frequency of the turbine and impeller are obtained under different prestress conditions by calculating different rotational speeds of the transmission shaft.The fundamental frequencies of the impeller and the turbine increase by 0.43%and 4.82%respectively when the rotational speed ranges from 100 rpm to 4500 rpm.The results of the present research indicate that the modal frequencies at different speeds are similar to the fundamental frequencies of the structure.Therefore,it is possible to estimate the vibration characteristics of the structure and optimize the structural design by numerical modal analysis in the static state instead of the dynamic state.展开更多
The equivalent stress at key positions of Bogie Frame for DMUs Exported to Tunisia is obtained by using simulation analysis. The evaluation of static strength and fatigue strength is checked referring to UIC specifica...The equivalent stress at key positions of Bogie Frame for DMUs Exported to Tunisia is obtained by using simulation analysis. The evaluation of static strength and fatigue strength is checked referring to UIC specification and Goodman sketch for welding materials. In addition, the modal analysis of the frame is made, and the vibrational modal of frame in given frequency domain is predetermined to evaluate the dynamical behavior of the frame in order to meet the dynamical design requirements. The results show that the key points of the calculated frame of the equivalent stress are less than allowable stress, and thus it could provide a theoretical foundation for the optimized design of frame structure and safety of industrial production.展开更多
In this study,a numerical approach is established to design a beam coupled to a Voice Coil Motor(VCM)with the aim to maximize the displacement in the inductive transducer.A finite element model is developed to simulat...In this study,a numerical approach is established to design a beam coupled to a Voice Coil Motor(VCM)with the aim to maximize the displacement in the inductive transducer.A finite element model is developed to simulate a VCM with different beams applying a harmonic analysis.The VCM is extracted from a recycled hard disk drive(HDD)and a parametric modal analysis is performed to identify the material parameters of the HDD and the beam.These parameters are obtained comparing the real vibration modes and natural frequencies(VCM-beam)with those determined from the finite element model.A numerical-experimental case study is carried out to demonstrate that if a beam is designed for a specific low frequency vibration between 0 and 10 Hz,the displacements are maximized in the VCM.For this purpose,real acceleration measurements taken from three individuals are used to provide the vibration signals in the numerical model.A beam is designed for one of the individuals using the natural frequency values determined from the measured signals.Results show that the displacements are maximized in the model which coincides with the natural frequency of the chosen individual.The main purpose of this research is to establish a design tool for energy harvesting purposes with VCM based on low frequency vibration sources as for example gait motions.展开更多
An ambient vibration test on a concrete bridge constructed in 1971 and calibration of its finite element model are presented.The bridge is characterized by a system of post-tensioned and simply supported beams.The dyn...An ambient vibration test on a concrete bridge constructed in 1971 and calibration of its finite element model are presented.The bridge is characterized by a system of post-tensioned and simply supported beams.The dynamic characteristics of the bridge,i.e.natural frequencies,mode shapes and damping ratios were computed from the ambient vibration tests by using the Eigensystem Realization Algorithm(ERA).Then,these characteristics were used to update the finite element model of the bridge by formulating an optimization problem and then using Genetic Algorithms(GA)to solve it.From the results of the ambient vibration test of this type of bridge,it is concluded that two-dimensional mode shapes exist:in the longitudinal and transverse;and these experimentally obtained dynamic characteristics were also achieved in the analytical model through updating.The application of GAs as optimization techniques showed great versatility to optimize any number and type of variables in the model.展开更多
In order to evaluate two different schemes' structural dynamic characters, dynamic response analysis of a commercial truck's main chassis frames is carried out. On the basis of correlation study between the tested a...In order to evaluate two different schemes' structural dynamic characters, dynamic response analysis of a commercial truck's main chassis frames is carried out. On the basis of correlation study between the tested and calculated modal results, the assembled frames' finite element analysis (FEA) models with sufficient precision are built up. Random response analysis in frequency domain is carried out with these FEA models, RMS values of yon Mises and main principle stresses of these two frames are obtained. It shows that the analysis resuits of the distributing tendency and concrete value ranges are coincident very well with test results. And from the results, it could be concluded that frames of scheme A endures relative better loading conditions and should be adopted as the final scheme.展开更多
Dynamic loading to a knee joint is considered to be an effective modality for enhancing the healing of long bones and cartilage that are subject to ailments like fractures, osteoarthritis, etc. We developed a knee loa...Dynamic loading to a knee joint is considered to be an effective modality for enhancing the healing of long bones and cartilage that are subject to ailments like fractures, osteoarthritis, etc. We developed a knee loading device and tested it for force application. The device applies forces on the skin, whereas force transmitted to the knee joint elements is directly responsible for promoting the healing of bone and cartilage. However, it is not well understood how loads on the skin are transmitted to the cartilage, ligaments, and bone. Based on a CAD model of a human knee joint, we conducted a finite element analysis (FEA) for force transmission from the skin and soft tissue to a knee joint. In this study, 3D models of human knee joint elements were assembled in an FEA software package (SIMSOLID). A wide range of forces was applied to the skin with different thickness in order to obtain approximate force values transmitted from the skin to the joint elements. The maximum Von Mises stress and displacement distributions were estimated for different components of the knee joint. The results demonstrate that the high load bearing areas were located on the posterior portion of the cartilage. This prediction can be used to improve the design of the knee loading device.展开更多
基金Sponsored by the Ministerial Level Foundation(40402020105)
文摘A contact bolt model is proposed as a new modeling technique to investigate the complex structure with bolted joints for modal analysis and compared with the coupled bolt model, and the test results are given. Among these models, the coupled bolt model provides the best accurate responses compared with the experimental results. The contact bolt model shows the best effectiveness and usefulness in view of operational time. The bolt models proposed in this study are adopted for a dynamic characteristic analysis of a large diesel engine consisting of several parts which are connected by many bolts. The dynamic behavior of the entire engine structure was investigated by experiment. The coupled bolt model and the contact bolt model were applied to model the assembly of engine with high preload. The experimental results are in good agreement with the finite element method (FEM) results. Compared with the other models, the contact bolt model presented in this paper is more effective and useful in view of operational time and experience of analysts.
文摘The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connecting rod for weight optimisation without losing the strength of the connecting rod. It considered modal and thermal analyses to investigate the suitability of the material for connecting rod design. The parameters that were considered under the modal analysis were: total deformation, and natural frequency, while the thermal analysis looked at the temperature distribution, total heat flux and directional heat flux of the four connecting rods made with titanium alloy, grey cast iron, structural steel and aluminium 7075 alloy respectively. The connecting rod was modelled using Autodesk inventor2017 software using the calculated parameters. The steady-state thermal analysis was used to determine the induced heat flux and directional heat flux. The study found that Aluminium 7075 alloy deformed more than the remaining three other materials but has superior qualities in terms of vibrational natural frequency, total heat flux and lightweight compared to structural steel, grey cast iron and titanium alloy.
基金Project supported by the National Natural Science Foundation of China (No. 30370371) and the Natural Science Foundation of Zheji-ang Province (No. 301267), China
文摘The “Huang gua” melons were measured for their physical properties including firmness and static elastic modulus. The vibrational characteristics of fruits and vegetables are governed by their elastic modulus (firmness), mass, and geometry. Therefore, it is possible to evaluate firmness of fruits and vegetables based on their vibrational characteristics. Analysis of the vibration responses of a fruit is suggested for measuring elastic properties (Firmness) non-destructively. The impulse response method is often used to measure firmness of fruits. The fruit was excited using three types of balls (wooden, steel and rubber) and the vibration is detected by an accelerometer. The Instron device was used to measure the static elastic modulus of the inner, middle and outer portions of melon flesh. Finite element (FE) technique was used to determine the optimum excitation location of the chosen measurement sensor and to analyze the mode shape fruits. Four types of mode shapes (torsional or flexural mode shape, first-type, second-type spherical mode and breathing mode shape) were found. Finite element simulation results agreed well with experimental results. Correlation between the firmness and resonant frequency (r2=0.91) and between the resonant frequency and stiffness factor (r2=0.74) existed. The optimum location and suitable direction for excitation and response measurement on the fruit were suggested.
基金Supported by the Research and Implementation of Sea Trial Technology(Grant No.2016YFC03000704).
文摘To control the vibration level of ships under construction,MSC Software’s Patran&Nastran modeling solutions can be used to establish a detailed finite element model of a new manned submersible support mother ship based on a line drawing,including the deck layout,bulkhead section,and stiffener distribution.After a comprehensive analysis of the ship simulation conditions,boundaries,and excitation forces of the main operating equipment,modal analysis and calculation of the ship vibration can be conducted.In this study,we calculated and analyzed the vibration response of key points in the stern area of the ship’s main deck and the submersible warehouse area under design loading working conditions.We then analyzed the vibration response of typical decks(including the compass deck,steering deck,captain’s deck,forecastle deck,and main deck)under the main excitation forces and moments(such as the full swing pod and generator sets).The analysis results showed that under DESIDEP working conditions,the vibration of each deck and key areas of the support mother ship could meet the vibration code requirements of the ship’s preliminary design(using the pod excitation and generator sets).Similarly,the vibration response of a scientific research ship under other loading conditions also met the requirements of the code and provided data support for a comprehensive understanding of the ship’s vibration and noise levels.Using actual vibration measurements,the accuracy of the vibration level simulations using finite element modeling was verified,the vibration of each area of the ship comfortably meeting the requirements of the China Classification Society.
基金Funded by the Natural Science Foundation of China (No. 50675232)the Natural Science Foundation of CQ CSTC (2006BB3008)
文摘A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.
文摘In recent years, inflatable structures have been a subject of interest for space applications such as communication antenna, solar thermal propulsion and entry/landing systems. The inflatable structures characterized by high strength-to-mass ratios, minimal stowage volume, which makes them suitable for cost-effective large space structures. A typical example for the inflatable structure is the inflated torus which often used in order to provide structure support. In this study, our main focus is to understand the dynamic characteristics of an inflated torus in order to formulate an accurate mathematical model suitable for active vibration control applications. A commercial finite element package, ANSYS, is used to model the inflated torus. To verify the model the obtained frequencies and mode shapes are compared with the published results, which are derived using analytical approach, the verification shows a good agreement between the FEM and the analytical results. Based on the verified model, parametric study was investigated; the material thickness increase causes the natural frequencies decrease, while the increase of the inflation pressure simply results in stiffening the ring, which means that the natural frequency increased. The FEM analysis gives an easy and fast way for the vibration analysis of the structures compared with the complicated analytical solutions.
基金the Ministerial Level Advanced Rearch Foundation (304030401)
文摘To improve the performance of the 2 m telescope, the optimum design is applied to the telescope assemble. Referring to the telescope assemble with the dimetric truss, a group of reasonable sizes of the telescope assemble are found by optimization methods and modal analysis, which will raise the resonant frequency by 4.21 %. As a result, the telescope assemble is less likely to resonate. Besides, the dynamic response module in ANSYS is utilized to analyze the modal type, harmonic vibration response and random vibration response of the telescope assemble. By the calculation of ANSYS, finite dement analysis (FEA) method proves that the performance of the telescope assemble is mildly enhanced by means of optimum design.
基金This research is funded by the grants from the National Natural Science Foundation of China(Project Nos.11772158 and 11502113)the Fundamental Research Funds for Central Universities(Project No.30917011103).
文摘The construction of seaside facilities is a hot topic in the field of ocean engineering.In this paper,a new type of floating breakwater is designed by 3D-CAD geometric modeling.Based on the vibration theory and finite element tech-nology,the floating breakwater model is optimized,and the modal analysis of the structure with the bracket as main body and blades as functional attachments is carried out.Natural frequencies and mode shapes of the blades are fi rst calculated,and the effects of the natural frequencies in both dry and wet conditions are taken into account.Modal analysis and harmonic response analysis of the bracket with different lengths by removing the blades are also carried out,and the different var-iations of the natural frequencies between several bracket units are compared.The responses of the key position of the bracket under different loads and different bracket lengths are analyzed.The influence of liquid on the natural frequency of the blades and the influence of the length of the bracket on the natural fre-quency of the bracket are discussed in the fluid-solid coupling state.Research in this paper provides a data basis for the safety assessment of the breakwater construction.
文摘An?ultrasonic compound horn is designed and manufactured, and the horn is analyzed by wave equation, finite element method and test. The modal frequencies and frequencies of the first and second longitudinal vibration of the horn are obtained by the finite element analysis. The horn is made and modal testing is carried out. The modal frequencies of the first and second longitudinal vibration are obtained respectively. The test results are in good agreement with the theoretical calculation. Experimental results show the maximum amplitude of the horn can reach 9?nm with applied excitation voltage of amplitude 7?V and frequency 21,450?Hz, when the amplitude of voltage increases?to 80?V, the horn of maximum amplitude reaches?23 μm. The maximum amplitude of the horn is approximately proportional to the amplitude of excitation voltage. The horn has the characteristics of high sensitivity and large amplitude, and can be used in ultrasonic machining and other fields.
基金financially supported by the National Key Research and Development Program of China Subproject(Grant No.2021YFD2000601)Innovation Scientists and Technicians Talent Projects of Henan Provincial Department of Education(Grant No.23IRTSTHN015,No.202300410124)。
文摘The vibration problem during the operation of rice transplanters is the most common phenomenon.In order that the static and dynamic characteristics of the rice transplanter chassis can meet the requirements of more stable operation,the research took the 2ZG-6DK rice transplanter as the research object to carry out a vibration reduction optimization study.In the research,the Pro/Engineer 5.0 software was first used to model the chassis of the rice transplanter.The constructed finite element model was revised by using the structural parameter revision method and the mixed penalty function method.The model was imported into ANSYS Workbench to solve the modal frequency and vibration shape of the rice transplanter chassis.Based on the MAC(modal assurance criterion)criterion,modal tests were carried out to verify the accuracy of the finite element theoretical analysis.Through the analysis of the characteristics of the external excitation frequency,the chassis is structurally optimized to avoid resonance caused by the natural frequency of the chassis falling within the road excitation frequency range.The final optimization results showed that the first four orders of modal frequencies of the chassis were adjusted to 32.083 Hz,33.751 Hz,42.517 Hz,and 50.362 Hz,respectively,in the case that the chassis mass was increased by 6.714 kg(8.8%).They all avoid the range of road excitation frequency(10-30 Hz)so that the rice transplanter can effectively avoid the resonance phenomenon during operation.This study can provide a reference for the design and optimization of the chassis structure of transplanter.
文摘In this paper, the finite element analysis software (ANSYS) is applied to the modal analysis of a ZJ30/1700CZ's drilling machine derrick under a natural condition and a loaded condition, respectively. The preceding nine step natural frequencies and the corresponding mode shapes of the derrick are calculated. By means of the comparison of the natural frequency of the derrick with the design work frequency of the drilling machine and the analysis of the step mode shape of the derrick, the drilling machine derrick structure design is proved to be correct.
文摘Stress and modal analyses are performed on an ultrasonic vibration system by means of a 3-dimensional finite element computation and dynamic modal analysis code "Algor" The system consists of an edge-cracked specimen linked elastically with one or two amplifying horns which come into resonant longitudinal vibration at 20kHz.Operating principle of the ultrasonic fatigue machines and experimental procedures for ultrasonic fatigue crack growth studies are briefly presented.
文摘The chassis frame of a heavy lectra haul is analysed by both modal experiment method and finite element method (FEM ) . The first ten order modal parameters of the chassis frame have been obtained satisfactorily. These parameters have important reference value in designing the chassis frame properly and provide a necessary basis for the fault diagnostics of the truck.
文摘In order to improve the dynamic stability of precision instruments during the design process, a compositive design method based on modal analysis of structure is proposed. With uniform boundary conditions and material characters, the results of Finite Element Analysis (FEA) vary with models. It should be checked whether the model is correctly simplified. Modal experiments can be used for such purpose. The method combines the high efficiency and agility of FEA with the reliability and accuracy of experiments, and avoids the drawbacks of FEA or experiments, such as uncertainty of FEA and high cost of experiments. Taking rotor frame structure as an example, this method is applied as follows: First the modal characters of structure are analyzed with FEA, and then the natural frequencies of the structure are tested by experiments to check the reliability of FEA method, and finally the design scheme is optimized by modifying structure parameters with confirmed FEA.
基金Supported by the China Postdoctoral Science Foundation(No.2019M663913XB)Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Monitoring(Xi’an University of Science and Technology)(No.SKL-MEEIM201907)+2 种基金Natural Science Basic Research Plan in Shaanxi Province of China(No.2019JZ-10)Science and Technology Program of Tibet Autonomous Region(No.XZ2019TL-G-02)Fundamental Research Funds for the Central Universities(No.300102250106)。
文摘In order to study the mechanical properties and the dynamic performance of torque converter,to reduce the vibration and noise during the operation and to improve the stability,a 215 mm hydraulic torque converter is taken as the research object,and modal analyses are performed based on the finite element method.The weak parts of the impeller structure are obtained after calculating the models of the impeller and turbine without prestress.The variation of the modal frequency of the turbine and impeller are obtained under different prestress conditions by calculating different rotational speeds of the transmission shaft.The fundamental frequencies of the impeller and the turbine increase by 0.43%and 4.82%respectively when the rotational speed ranges from 100 rpm to 4500 rpm.The results of the present research indicate that the modal frequencies at different speeds are similar to the fundamental frequencies of the structure.Therefore,it is possible to estimate the vibration characteristics of the structure and optimize the structural design by numerical modal analysis in the static state instead of the dynamic state.
文摘The equivalent stress at key positions of Bogie Frame for DMUs Exported to Tunisia is obtained by using simulation analysis. The evaluation of static strength and fatigue strength is checked referring to UIC specification and Goodman sketch for welding materials. In addition, the modal analysis of the frame is made, and the vibrational modal of frame in given frequency domain is predetermined to evaluate the dynamical behavior of the frame in order to meet the dynamical design requirements. The results show that the key points of the calculated frame of the equivalent stress are less than allowable stress, and thus it could provide a theoretical foundation for the optimized design of frame structure and safety of industrial production.
文摘In this study,a numerical approach is established to design a beam coupled to a Voice Coil Motor(VCM)with the aim to maximize the displacement in the inductive transducer.A finite element model is developed to simulate a VCM with different beams applying a harmonic analysis.The VCM is extracted from a recycled hard disk drive(HDD)and a parametric modal analysis is performed to identify the material parameters of the HDD and the beam.These parameters are obtained comparing the real vibration modes and natural frequencies(VCM-beam)with those determined from the finite element model.A numerical-experimental case study is carried out to demonstrate that if a beam is designed for a specific low frequency vibration between 0 and 10 Hz,the displacements are maximized in the VCM.For this purpose,real acceleration measurements taken from three individuals are used to provide the vibration signals in the numerical model.A beam is designed for one of the individuals using the natural frequency values determined from the measured signals.Results show that the displacements are maximized in the model which coincides with the natural frequency of the chosen individual.The main purpose of this research is to establish a design tool for energy harvesting purposes with VCM based on low frequency vibration sources as for example gait motions.
文摘An ambient vibration test on a concrete bridge constructed in 1971 and calibration of its finite element model are presented.The bridge is characterized by a system of post-tensioned and simply supported beams.The dynamic characteristics of the bridge,i.e.natural frequencies,mode shapes and damping ratios were computed from the ambient vibration tests by using the Eigensystem Realization Algorithm(ERA).Then,these characteristics were used to update the finite element model of the bridge by formulating an optimization problem and then using Genetic Algorithms(GA)to solve it.From the results of the ambient vibration test of this type of bridge,it is concluded that two-dimensional mode shapes exist:in the longitudinal and transverse;and these experimentally obtained dynamic characteristics were also achieved in the analytical model through updating.The application of GAs as optimization techniques showed great versatility to optimize any number and type of variables in the model.
文摘In order to evaluate two different schemes' structural dynamic characters, dynamic response analysis of a commercial truck's main chassis frames is carried out. On the basis of correlation study between the tested and calculated modal results, the assembled frames' finite element analysis (FEA) models with sufficient precision are built up. Random response analysis in frequency domain is carried out with these FEA models, RMS values of yon Mises and main principle stresses of these two frames are obtained. It shows that the analysis resuits of the distributing tendency and concrete value ranges are coincident very well with test results. And from the results, it could be concluded that frames of scheme A endures relative better loading conditions and should be adopted as the final scheme.
文摘Dynamic loading to a knee joint is considered to be an effective modality for enhancing the healing of long bones and cartilage that are subject to ailments like fractures, osteoarthritis, etc. We developed a knee loading device and tested it for force application. The device applies forces on the skin, whereas force transmitted to the knee joint elements is directly responsible for promoting the healing of bone and cartilage. However, it is not well understood how loads on the skin are transmitted to the cartilage, ligaments, and bone. Based on a CAD model of a human knee joint, we conducted a finite element analysis (FEA) for force transmission from the skin and soft tissue to a knee joint. In this study, 3D models of human knee joint elements were assembled in an FEA software package (SIMSOLID). A wide range of forces was applied to the skin with different thickness in order to obtain approximate force values transmitted from the skin to the joint elements. The maximum Von Mises stress and displacement distributions were estimated for different components of the knee joint. The results demonstrate that the high load bearing areas were located on the posterior portion of the cartilage. This prediction can be used to improve the design of the knee loading device.