期刊文献+
共找到1,085篇文章
< 1 2 55 >
每页显示 20 50 100
Censored Composite Conditional Quantile Screening for High-Dimensional Survival Data
1
作者 LIU Wei LI Yingqiu 《应用概率统计》 CSCD 北大核心 2024年第5期783-799,共17页
In this paper,we introduce the censored composite conditional quantile coefficient(cC-CQC)to rank the relative importance of each predictor in high-dimensional censored regression.The cCCQC takes advantage of all usef... In this paper,we introduce the censored composite conditional quantile coefficient(cC-CQC)to rank the relative importance of each predictor in high-dimensional censored regression.The cCCQC takes advantage of all useful information across quantiles and can detect nonlinear effects including interactions and heterogeneity,effectively.Furthermore,the proposed screening method based on cCCQC is robust to the existence of outliers and enjoys the sure screening property.Simulation results demonstrate that the proposed method performs competitively on survival datasets of high-dimensional predictors,particularly when the variables are highly correlated. 展开更多
关键词 high-dimensional survival data censored composite conditional quantile coefficient sure screening property rank consistency property
下载PDF
Turbo Message Passing Based Burst Interference Cancellation for Data Detection in Massive MIMO-OFDM Systems
2
作者 Wenjun Jiang Zhihao Ou +1 位作者 Xiaojun Yuan Li Wang 《China Communications》 SCIE CSCD 2024年第2期143-154,共12页
This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst inte... This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound. 展开更多
关键词 burst interference cancellation data detection massive multiple-input multiple-output(MIMO) message passing orthogonal frequency division multiplexing(OFDM)
下载PDF
Optimal Estimation of High-Dimensional Covariance Matrices with Missing and Noisy Data
3
作者 Meiyin Wang Wanzhou Ye 《Advances in Pure Mathematics》 2024年第4期214-227,共14页
The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based o... The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method. 展开更多
关键词 high-dimensional Covariance Matrix Missing data Sub-Gaussian Noise Optimal Estimation
下载PDF
Observation points classifier ensemble for high-dimensional imbalanced classification 被引量:1
4
作者 Yulin He Xu Li +3 位作者 Philippe Fournier‐Viger Joshua Zhexue Huang Mianjie Li Salman Salloum 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第2期500-517,共18页
In this paper,an Observation Points Classifier Ensemble(OPCE)algorithm is proposed to deal with High-Dimensional Imbalanced Classification(HDIC)problems based on data processed using the Multi-Dimensional Scaling(MDS)... In this paper,an Observation Points Classifier Ensemble(OPCE)algorithm is proposed to deal with High-Dimensional Imbalanced Classification(HDIC)problems based on data processed using the Multi-Dimensional Scaling(MDS)feature extraction technique.First,dimensionality of the original imbalanced data is reduced using MDS so that distances between any two different samples are preserved as well as possible.Second,a novel OPCE algorithm is applied to classify imbalanced samples by placing optimised observation points in a low-dimensional data space.Third,optimization of the observation point mappings is carried out to obtain a reliable assessment of the unknown samples.Exhaustive experiments have been conducted to evaluate the feasibility,rationality,and effectiveness of the proposed OPCE algorithm using seven benchmark HDIC data sets.Experimental results show that(1)the OPCE algorithm can be trained faster on low-dimensional imbalanced data than on high-dimensional data;(2)the OPCE algorithm can correctly identify samples as the number of optimised observation points is increased;and(3)statistical analysis reveals that OPCE yields better HDIC performances on the selected data sets in comparison with eight other HDIC algorithms.This demonstrates that OPCE is a viable algorithm to deal with HDIC problems. 展开更多
关键词 classifier ensemble feature transformation high-dimensional data classification imbalanced learning observation point mechanism
下载PDF
A Length-Adaptive Non-Dominated Sorting Genetic Algorithm for Bi-Objective High-Dimensional Feature Selection
5
作者 Yanlu Gong Junhai Zhou +2 位作者 Quanwang Wu MengChu Zhou Junhao Wen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第9期1834-1844,共11页
As a crucial data preprocessing method in data mining,feature selection(FS)can be regarded as a bi-objective optimization problem that aims to maximize classification accuracy and minimize the number of selected featu... As a crucial data preprocessing method in data mining,feature selection(FS)can be regarded as a bi-objective optimization problem that aims to maximize classification accuracy and minimize the number of selected features.Evolutionary computing(EC)is promising for FS owing to its powerful search capability.However,in traditional EC-based methods,feature subsets are represented via a length-fixed individual encoding.It is ineffective for high-dimensional data,because it results in a huge search space and prohibitive training time.This work proposes a length-adaptive non-dominated sorting genetic algorithm(LA-NSGA)with a length-variable individual encoding and a length-adaptive evolution mechanism for bi-objective highdimensional FS.In LA-NSGA,an initialization method based on correlation and redundancy is devised to initialize individuals of diverse lengths,and a Pareto dominance-based length change operator is introduced to guide individuals to explore in promising search space adaptively.Moreover,a dominance-based local search method is employed for further improvement.The experimental results based on 12 high-dimensional gene datasets show that the Pareto front of feature subsets produced by LA-NSGA is superior to those of existing algorithms. 展开更多
关键词 Bi-objective optimization feature selection(FS) genetic algorithm high-dimensional data length-adaptive
下载PDF
Similarity measurement method of high-dimensional data based on normalized net lattice subspace 被引量:4
6
作者 李文法 Wang Gongming +1 位作者 Li Ke Huang Su 《High Technology Letters》 EI CAS 2017年第2期179-184,共6页
The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data.The reason is that data difference between sparse and noisy dimensionalities... The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data.The reason is that data difference between sparse and noisy dimensionalities occupies a large proportion of the similarity,leading to the dissimilarities between any results.A similarity measurement method of high-dimensional data based on normalized net lattice subspace is proposed.The data range of each dimension is divided into several intervals,and the components in different dimensions are mapped onto the corresponding interval.Only the component in the same or adjacent interval is used to calculate the similarity.To validate this method,three data types are used,and seven common similarity measurement methods are compared.The experimental result indicates that the relative difference of the method is increasing with the dimensionality and is approximately two or three orders of magnitude higher than the conventional method.In addition,the similarity range of this method in different dimensions is [0,1],which is fit for similarity analysis after dimensionality reduction. 展开更多
关键词 high-dimensional data the curse of dimensionality SIMILARITY NORMALIZATION SUBSPACE NPsim
下载PDF
A study on fast post-processing massive data of casting numerical simulation on personal computers 被引量:1
7
作者 Chen Tao Liao Dunming +1 位作者 Pang Shenyong Zhou Jianxin 《China Foundry》 SCIE CAS 2013年第5期321-324,共4页
When castings become complicated and the demands for precision of numerical simulation become higher,the numerical data of casting numerical simulation become more massive.On a general personal computer,these massive ... When castings become complicated and the demands for precision of numerical simulation become higher,the numerical data of casting numerical simulation become more massive.On a general personal computer,these massive numerical data may probably exceed the capacity of available memory,resulting in failure of rendering.Based on the out-of-core technique,this paper proposes a method to effectively utilize external storage and reduce memory usage dramatically,so as to solve the problem of insufficient memory for massive data rendering on general personal computers.Based on this method,a new postprocessor is developed.It is capable to illustrate filling and solidification processes of casting,as well as thermal stess.The new post-processor also provides fast interaction to simulation results.Theoretical analysis as well as several practical examples prove that the memory usage and loading time of the post-processor are independent of the size of the relevant files,but the proportion of the number of cells on surface.Meanwhile,the speed of rendering and fetching of value from the mouse is appreciable,and the demands of real-time and interaction are satisfied. 展开更多
关键词 casting numerical simulation massive data fast post-processing
下载PDF
Research on data load balancing technology of massive storage systems for wearable devices 被引量:1
8
作者 Shujun Liang Jing Cheng Jianwei Zhang 《Digital Communications and Networks》 SCIE CSCD 2022年第2期143-149,共7页
Because of the limited memory of the increasing amount of information in current wearable devices,the processing capacity of the servers in the storage system can not keep up with the speed of information growth,resul... Because of the limited memory of the increasing amount of information in current wearable devices,the processing capacity of the servers in the storage system can not keep up with the speed of information growth,resulting in low load balancing,long load balancing time and data processing delay.Therefore,a data load balancing technology is applied to the massive storage systems of wearable devices in this paper.We first analyze the object-oriented load balancing method,and formally describe the dynamic load balancing issues,taking the load balancing as a mapping problem.Then,the task of assigning each data node and the request of the corresponding data node’s actual processing capacity are completed.Different data is allocated to the corresponding data storage node to complete the calculation of the comprehensive weight of the data storage node.According to the load information of each data storage node collected by the scheduler in the storage system,the load weight of the current data storage node is calculated and distributed.The data load balancing of the massive storage system for wearable devices is realized.The experimental results show that the average time of load balancing using this method is 1.75h,which is much lower than the traditional methods.The results show the data load balancing technology of the massive storage system of wearable devices has the advantages of short data load balancing time,high load balancing,strong data processing capability,short processing time and obvious application. 展开更多
关键词 Wearable device massive data data storage system Load balancing Weigh
下载PDF
Parallelized User Clicks Recognition from Massive HTTP Data Based on Dependency Graph Model 被引量:1
9
作者 FANG Chcng LIU Jun LEI Zhenming 《China Communications》 SCIE CSCD 2014年第12期13-25,共13页
With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this pap... With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web requests.Based on this model,we design and implement a heuristic parallel algorithm to distinguish user clicks with the assistance of cloud computing technology.We evaluate the proposed algorithm with real massive data.The size of the dataset collected from a mobile core network is 228.7GB.It covers more than three million users.The experiment results demonstrate that the proposed algorithm can achieve higher accuracy than previous methods. 展开更多
关键词 cloud computing massive data graph model web usage mining
下载PDF
Study on Massive Vegetation Data Processing of FY-3 Based on RAM (h)
10
作者 Manyun Lin Xiangang Zhao +2 位作者 Cunqun Fan Lizi Xie Lan Wei 《Journal of Geoscience and Environment Protection》 2017年第4期75-83,共9页
The vegetation data of the Fengyun meteorological satellite are segmented according to the latitude and longitude, and can be written into 648 blocks. However, the vegetation data processing efficiency is low because ... The vegetation data of the Fengyun meteorological satellite are segmented according to the latitude and longitude, and can be written into 648 blocks. However, the vegetation data processing efficiency is low because the data belongs to massive data. This paper presents a data processing method based on RAM (h) for Fengyun-3 vegetation data. First of all, we introduce the Locality-Aware model to segment the input data, then locate the data based on geographic location, and finally fuse the independent data based on geographical location. Experimental results show that the proposed method can effectively improve the data processing efficiency. 展开更多
关键词 Meteorological Satellite VEGETATION data RAM (h) massive data Processing
下载PDF
A nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix
11
作者 李文法 Wang Gongming +1 位作者 Ma Nan Liu Hongzhe 《High Technology Letters》 EI CAS 2016年第3期241-247,共7页
Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculat... Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculate similarity. And a sequential NPsim matrix is built to improve indexing performance. To sum up the above innovations,a nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix is proposed in comparison with the nearest neighbor search algorithms based on KD-tree or SR-tree on Munsell spectral data set. Experimental results show that the proposed algorithm similarity is better than that of other algorithms and searching speed is more than thousands times of others. In addition,the slow construction speed of sequential NPsim matrix can be increased by using parallel computing. 展开更多
关键词 nearest neighbor search high-dimensional data SIMILARITY indexing tree NPsim KD-TREE SR-tree Munsell
下载PDF
Dimensionality Reduction of High-Dimensional Highly Correlated Multivariate Grapevine Dataset
12
作者 Uday Kant Jha Peter Bajorski +3 位作者 Ernest Fokoue Justine Vanden Heuvel Jan van Aardt Grant Anderson 《Open Journal of Statistics》 2017年第4期702-717,共16页
Viticulturists traditionally have a keen interest in studying the relationship between the biochemistry of grapevines’ leaves/petioles and their associated spectral reflectance in order to understand the fruit ripeni... Viticulturists traditionally have a keen interest in studying the relationship between the biochemistry of grapevines’ leaves/petioles and their associated spectral reflectance in order to understand the fruit ripening rate, water status, nutrient levels, and disease risk. In this paper, we implement imaging spectroscopy (hyperspectral) reflectance data, for the reflective 330 - 2510 nm wavelength region (986 total spectral bands), to assess vineyard nutrient status;this constitutes a high dimensional dataset with a covariance matrix that is ill-conditioned. The identification of the variables (wavelength bands) that contribute useful information for nutrient assessment and prediction, plays a pivotal role in multivariate statistical modeling. In recent years, researchers have successfully developed many continuous, nearly unbiased, sparse and accurate variable selection methods to overcome this problem. This paper compares four regularized and one functional regression methods: Elastic Net, Multi-Step Adaptive Elastic Net, Minimax Concave Penalty, iterative Sure Independence Screening, and Functional Data Analysis for wavelength variable selection. Thereafter, the predictive performance of these regularized sparse models is enhanced using the stepwise regression. This comparative study of regression methods using a high-dimensional and highly correlated grapevine hyperspectral dataset revealed that the performance of Elastic Net for variable selection yields the best predictive ability. 展开更多
关键词 high-dimensional data MULTI-STEP Adaptive Elastic Net MINIMAX CONCAVE Penalty Sure Independence Screening Functional data Analysis
下载PDF
Making Short-term High-dimensional Data Predictable
13
作者 CHEN Luonan 《Bulletin of the Chinese Academy of Sciences》 2018年第4期243-244,共2页
Making accurate forecast or prediction is a challenging task in the big data era, in particular for those datasets involving high-dimensional variables but short-term time series points,which are generally available f... Making accurate forecast or prediction is a challenging task in the big data era, in particular for those datasets involving high-dimensional variables but short-term time series points,which are generally available from real-world systems.To address this issue, Prof. 展开更多
关键词 RDE MAKING SHORT-TERM high-dimensional data Predictable
下载PDF
An Unsupervised Method for Short-Text Sentiment Analysis Based on Analysis of Massive Data
14
作者 Zhenhua Huang Zhenrong Zhao +1 位作者 Qiong Liu Zhenyu Wang 《国际计算机前沿大会会议论文集》 2015年第1期49-50,共2页
Common forms of short text are microblogs, Twitter posts, short product reviews, short movie reviews and instant messages. Sentiment analysis of them has been a hot topic. A highly-accurate model is proposed in this p... Common forms of short text are microblogs, Twitter posts, short product reviews, short movie reviews and instant messages. Sentiment analysis of them has been a hot topic. A highly-accurate model is proposed in this paper for short-text sentiment analysis. The researches target microblog, product review and movie reviews. Words, symbols or sentences with emotional tendencies are proved important indicators in short-text sentiment analysis based on massive users’ data. It is an effective method to predict emotional tendencies of short text using these features. The model has noticed the phenomenon of polysemy in single-character emotional word in Chinese and discusses singlecharacter and multi-character emotional word separately. The idea of model can be used to deal with various kinds of short-text data. Experiments show that this model performs well in most cases. 展开更多
关键词 SENTIMENT ANALYSIS SHORT text EMOTIONAL WORDS massive data
下载PDF
Optimal decorrelated score subsampling for generalized linear models with massive data 被引量:1
15
作者 Junzhuo Gao Lei Wang Heng Lian 《Science China Mathematics》 SCIE CSCD 2024年第2期405-430,共26页
In this paper, we consider the unified optimal subsampling estimation and inference on the lowdimensional parameter of main interest in the presence of the nuisance parameter for low/high-dimensionalgeneralized linear... In this paper, we consider the unified optimal subsampling estimation and inference on the lowdimensional parameter of main interest in the presence of the nuisance parameter for low/high-dimensionalgeneralized linear models (GLMs) with massive data. We first present a general subsampling decorrelated scorefunction to reduce the influence of the less accurate nuisance parameter estimation with the slow convergencerate. The consistency and asymptotic normality of the resultant subsample estimator from a general decorrelatedscore subsampling algorithm are established, and two optimal subsampling probabilities are derived under theA- and L-optimality criteria to downsize the data volume and reduce the computational burden. The proposedoptimal subsampling probabilities provably improve the asymptotic efficiency of the subsampling schemes in thelow-dimensional GLMs and perform better than the uniform subsampling scheme in the high-dimensional GLMs.A two-step algorithm is further proposed to implement, and the asymptotic properties of the correspondingestimators are also given. Simulations show satisfactory performance of the proposed estimators, and twoapplications to census income and Fashion-MNIST datasets also demonstrate its practical applicability. 展开更多
关键词 A-OPTIMALITY decorrelated score subsampling high-dimensional inference L-optimality massive data
原文传递
Data-driven Surrogate-assisted Method for High-dimensional Multi-area Combined Economic/Emission Dispatch
16
作者 Chenhao Lin Huijun Liang +2 位作者 Aokang Pang Jianwei Zhong Yongchao Yang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第1期52-64,共13页
Multi-area combined economic/emission dispatch(MACEED)problems are generally studied using analytical functions.However,as the scale of power systems increases,ex isting solutions become time-consuming and may not mee... Multi-area combined economic/emission dispatch(MACEED)problems are generally studied using analytical functions.However,as the scale of power systems increases,ex isting solutions become time-consuming and may not meet oper ational constraints.To overcome excessive computational ex pense in high-dimensional MACEED problems,a novel data-driven surrogate-assisted method is proposed.First,a cosine-similarity-based deep belief network combined with a back-propagation(DBN+BP)neural network is utilized to replace cost and emission functions.Second,transfer learning is applied with a pretraining and fine-tuning method to improve DBN+BP regression surrogate models,thus realizing fast con struction of surrogate models between different regional power systems.Third,a multi-objective antlion optimizer with a novel general single-dimension retention bi-objective optimization poli cy is proposed to execute MACEED optimization to obtain scheduling decisions.The proposed method not only ensures the convergence,uniformity,and extensibility of the Pareto front,but also greatly reduces the computational time.Finally,a 4-ar ea 40-unit test system with different constraints is employed to demonstrate the effectiveness of the proposed method. 展开更多
关键词 Multi-area combined economic/emission dispatch high-dimensional power system deep belief network data driven transfer learning
原文传递
Randomized Latent Factor Model for High-dimensional and Sparse Matrices from Industrial Applications 被引量:13
17
作者 Mingsheng Shang Xin Luo +3 位作者 Zhigang Liu Jia Chen Ye Yuan MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期131-141,共11页
Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts itera... Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts iterative optimizers,which may consume many iterations to achieve a local optima,resulting in considerable time cost. Hence, determining how to accelerate the training process for LF models has become a significant issue. To address this, this work proposes a randomized latent factor(RLF) model. It incorporates the principle of randomized learning techniques from neural networks into the LF analysis of HiDS matrices, thereby greatly alleviating computational burden. It also extends a standard learning process for randomized neural networks in context of LF analysis to make the resulting model represent an HiDS matrix correctly.Experimental results on three HiDS matrices from industrial applications demonstrate that compared with state-of-the-art LF models, RLF is able to achieve significantly higher computational efficiency and comparable prediction accuracy for missing data.I provides an important alternative approach to LF analysis of HiDS matrices, which is especially desired for industrial applications demanding highly efficient models. 展开更多
关键词 Big data high-dimensional and sparse matrix latent factor analysis latent factor model randomized learning
下载PDF
CSFW-SC: Cuckoo Search Fuzzy-Weighting Algorithm for Subspace Clustering Applying to High-Dimensional Clustering 被引量:1
18
作者 WANG Jindong HE Jiajing +1 位作者 ZHANG Hengwei YU Zhiyong 《China Communications》 SCIE CSCD 2015年第S2期55-63,共9页
Aimed at the issue that traditional clustering methods are not appropriate to high-dimensional data, a cuckoo search fuzzy-weighting algorithm for subspace clustering is presented on the basis of the exited soft subsp... Aimed at the issue that traditional clustering methods are not appropriate to high-dimensional data, a cuckoo search fuzzy-weighting algorithm for subspace clustering is presented on the basis of the exited soft subspace clustering algorithm. In the proposed algorithm, a novel objective function is firstly designed by considering the fuzzy weighting within-cluster compactness and the between-cluster separation, and loosening the constraints of dimension weight matrix. Then gradual membership and improved Cuckoo search, a global search strategy, are introduced to optimize the objective function and search subspace clusters, giving novel learning rules for clustering. At last, the performance of the proposed algorithm on the clustering analysis of various low and high dimensional datasets is experimentally compared with that of several competitive subspace clustering algorithms. Experimental studies demonstrate that the proposed algorithm can obtain better performance than most of the existing soft subspace clustering algorithms. 展开更多
关键词 high-dimensional data CLUSTERING soft SUBSPACE CUCKOO SEARCH FUZZY CLUSTERING
下载PDF
Variance Estimation for High-Dimensional Varying Index Coefficient Models
19
作者 Miao Wang Hao Lv Yicun Wang 《Open Journal of Statistics》 2019年第5期555-570,共16页
This paper studies the re-adjusted cross-validation method and a semiparametric regression model called the varying index coefficient model. We use the profile spline modal estimator method to estimate the coefficient... This paper studies the re-adjusted cross-validation method and a semiparametric regression model called the varying index coefficient model. We use the profile spline modal estimator method to estimate the coefficients of the parameter part of the Varying Index Coefficient Model (VICM), while the unknown function part uses the B-spline to expand. Moreover, we combine the above two estimation methods under the assumption of high-dimensional data. The results of data simulation and empirical analysis show that for the varying index coefficient model, the re-adjusted cross-validation method is better in terms of accuracy and stability than traditional methods based on ordinary least squares. 展开更多
关键词 high-dimensional data Refitted Cross-Validation VARYING INDEX COEFFICIENT MODELS Variance ESTIMATION
下载PDF
基于数据挖掘的5G Massive MIMO天线权值优化方法研究 被引量:4
20
作者 田原 张亚男 +1 位作者 贾磊 李连本 《电信工程技术与标准化》 2021年第11期81-86,共6页
本文基于4G/5G数据挖掘分析,给出了一种NSA组网下5G Massive MIMO天线权值智能优化方法。该方法结合4G MDT和5G MR数据,通过聚类和成形算法分析得到待优化小区理想权值集合,可以在海量权值因子中快速寻优得到最优权值组合,采用基于风险... 本文基于4G/5G数据挖掘分析,给出了一种NSA组网下5G Massive MIMO天线权值智能优化方法。该方法结合4G MDT和5G MR数据,通过聚类和成形算法分析得到待优化小区理想权值集合,可以在海量权值因子中快速寻优得到最优权值组合,采用基于风险控制的调整算法实现Massive MIMO天线权值智能自动化迭代寻优。 展开更多
关键词 4G/5G协同 massive MIMO 天线权值 数据挖掘
下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部