Complex flow around floating structures is a highly nonlinear problem,and it is a typical feature in ship and ocean engineering.Traditional experimental methods and potential flow theory have limitations in predicting...Complex flow around floating structures is a highly nonlinear problem,and it is a typical feature in ship and ocean engineering.Traditional experimental methods and potential flow theory have limitations in predicting complex viscous flows.With the improvement of high-performance computing and the development of numerical techniques,computational fluid dynamics(CFD)has become increasingly powerful in predicting the complex viscous flow around floating structures.This paper reviews the recent progress in CFD techniques for numerical solutions of typical complex viscous flows in ship and ocean engineering.Applications to free-surface flows,breaking bow waves of high-speed ship,ship hull-propeller-rudder interaction,vortexinduced vibration of risers,vortex-induced motions of deep-draft platforms,and floating offshore wind turbines are discussed.Typical techniques,including volume of fluid for sharp interface,dynamic overset grid,detached eddy simulation,and fluid-structure coupling,are reviewed along with their applications.Some novel techniques,such as high-efficiency Cartesian grid method and GPU acceleration technique,are discussed in the last part as the future perspective for further enhancement of accuracy and efficiency for CFD simulations of complex flow in ship and ocean engineering.展开更多
Most hydrodynamic problems in ship and ocean engineering are complex and highly coupled.Under the trend of intelligent and digital design for ships and ocean engineering structures,comprehensive performance evaluation...Most hydrodynamic problems in ship and ocean engineering are complex and highly coupled.Under the trend of intelligent and digital design for ships and ocean engineering structures,comprehensive performance evaluation and optimization are of vital importance during design.In this process,various coupling effects need to be accurately predicted.With the significant progress of computational fluid dynamics(CFD),many advanced numerical models were proposed to simulate the complex coupling hydrodynamic problems in ship and ocean engineering field.In this paper,five key coupling hydrodynamic problems are introduced,which are hull-propeller-rudder coupling,wave-floating structure coupling,aerodynamic-hydrodynamic coupling,fluid structure coupling and fluid-noise coupling,respectively.The paper focuses on the numerical simulation techniques corresponding to each coupling problem,including the theories and the applications.Future directions and conclusions are provided finally.展开更多
基金supported by the National Natural Science Foundation of China(51809169,51879159)Chang Jiang Scholars Program(T2014099)+2 种基金Shanghai Excellent Academic Leaders Program(17XD1402300)Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China(2016-23/09)National Key Research and Development Program of China(2019YFB1704203,2019YFC0312400).
文摘Complex flow around floating structures is a highly nonlinear problem,and it is a typical feature in ship and ocean engineering.Traditional experimental methods and potential flow theory have limitations in predicting complex viscous flows.With the improvement of high-performance computing and the development of numerical techniques,computational fluid dynamics(CFD)has become increasingly powerful in predicting the complex viscous flow around floating structures.This paper reviews the recent progress in CFD techniques for numerical solutions of typical complex viscous flows in ship and ocean engineering.Applications to free-surface flows,breaking bow waves of high-speed ship,ship hull-propeller-rudder interaction,vortexinduced vibration of risers,vortex-induced motions of deep-draft platforms,and floating offshore wind turbines are discussed.Typical techniques,including volume of fluid for sharp interface,dynamic overset grid,detached eddy simulation,and fluid-structure coupling,are reviewed along with their applications.Some novel techniques,such as high-efficiency Cartesian grid method and GPU acceleration technique,are discussed in the last part as the future perspective for further enhancement of accuracy and efficiency for CFD simulations of complex flow in ship and ocean engineering.
基金Project supported by the National Natural Science Foundation of China(Grant No.51879159,51809169 and 51909160)the National Key Research and Development Program of China(Grant Nos.2019YFB1704200,2019YFC0312400)+2 种基金This work was supported by the Chang Jiang Scholars Program(Grant No.T2014099)the Shanghai Excellent Academic Leaders Program(Grant No.17XD1402300)the Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China(2016-23/09).
文摘Most hydrodynamic problems in ship and ocean engineering are complex and highly coupled.Under the trend of intelligent and digital design for ships and ocean engineering structures,comprehensive performance evaluation and optimization are of vital importance during design.In this process,various coupling effects need to be accurately predicted.With the significant progress of computational fluid dynamics(CFD),many advanced numerical models were proposed to simulate the complex coupling hydrodynamic problems in ship and ocean engineering field.In this paper,five key coupling hydrodynamic problems are introduced,which are hull-propeller-rudder coupling,wave-floating structure coupling,aerodynamic-hydrodynamic coupling,fluid structure coupling and fluid-noise coupling,respectively.The paper focuses on the numerical simulation techniques corresponding to each coupling problem,including the theories and the applications.Future directions and conclusions are provided finally.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10602055 and 40776007)the Natural Science Foundation of China Jiliang University (Grant No. XZ0501)