This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable th...This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable their passive backscattering and active transmission to the access point(AP). We propose an efficient time scheduling scheme for network performance enhancement, based on which each sensor can always harvest energy from the PB over the entire block except its time slots allocated for passive and active information delivery. Considering the PB and wireless sensors are from two selfish service providers, we use the Stackelberg game to model the energy interaction among them. To address the non-convexity of the leader-level problem, we propose to decompose the original problem into two subproblems and solve them iteratively in an alternating manner. Specifically, the successive convex approximation, semi-definite relaxation(SDR) and variable substitution techniques are applied to find a nearoptimal solution. To evaluate the performance loss caused by the interaction between two providers, we further investigate the social welfare maximization problem. Numerical results demonstrate that compared to the benchmark schemes, the proposed scheme can achieve up to 35.4% and 38.7% utility gain for the leader and the follower, respectively.展开更多
The integration of photovoltaic,energy storage,direct current,and flexible load(PEDF)technologies in building power systems is an importantmeans to address the energy crisis and promote the development of green buildi...The integration of photovoltaic,energy storage,direct current,and flexible load(PEDF)technologies in building power systems is an importantmeans to address the energy crisis and promote the development of green buildings.The friendly interaction between the PEDF systems and the power grid can promote the utilization of renewable energy and enhance the stability of the power grid.For this purpose,this work introduces a framework of multiple incentive mechanisms for a PEDF park,a building energy system that implements PEDF technologies.The incentive mechanisms proposed in this paper include both economic and noneconomic aspects,which is the most significant innovation of this paper.By modeling the relationship between a PEDF park and the power grid into a Stackelberg game,we demonstrate the effectiveness of these incentive measures in promoting the friendly interaction between the two entities.In this game model,the power grid determines on the prices of electricity trading and incentive subsidy,aiming to maximize its revenue while reducing the peak load of the PEDF park.On the other hand,the PEDF park make its dispatch plan according to the prices established by the grid,in order to reduce electricity consumption expense,improve electricity utility,and enhance the penetration rate of renewable energy.The results show that the proposed incentive mechanisms for the PEDF park can help to optimize energy consumption and promote sustainable energy practices.展开更多
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through the deployment ...With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through the deployment of energy storage.To solve the problem of the interests of different subjects in the operation of the energy storage power stations(ESS)and the integrated energy multi-microgrid alliance(IEMA),this paper proposes the optimization operation method of the energy storage power station and the IEMA based on the Stackelberg game.In the upper layer,ESS optimizes charging and discharging decisions through a dynamic pricing mechanism.In the lower layer,IEMA optimizes the output of various energy conversion coupled devices within the IEMA,as well as energy interaction and demand response(DR),based on the energy interaction prices provided by ESS.The results demonstrate that the optimization strategy proposed in this paper not only effectively balances the benefits of the IEMA and ESS but also enhances energy consumption rates and reduces IEMA energy costs.展开更多
With increasing reforms related to integrated energy systems(IESs),each energy subsystem,as a participant based on bounded rationality,significantly influences the optimal scheduling of the entire IES through mutual l...With increasing reforms related to integrated energy systems(IESs),each energy subsystem,as a participant based on bounded rationality,significantly influences the optimal scheduling of the entire IES through mutual learning and imitation.A reasonable multiagent joint operation strategy can help this system meet its low-carbon objectives.This paper proposes a bilayer low-carbon optimal operational strategy for an IES based on the Stackelberg master-slave game and multiagent joint operation.The studied IES includes cogeneration,power-to-gas,and carbon capture systems.Based on the Stackelberg master-slave game theory,sellers are used as leaders in the upper layer to set the prices of electricity and heat,while energy producers,energy storage providers,and load aggregators are used as followers in the lower layer to adjust the operational strategy of the system.An IES bilayer optimization model based on the Stackelberg master-slave game was developed.Finally,the Karush-Kuhn-Tucker(KKT)condition and linear relaxation technology are used to convert the bilayer game model to a single layer.CPLEX,which is a mathematical program solver,is used to solve the equilibrium problem and the carbon emission trading cost of the system when the benefits of each subject reach maximum and to analyze the impact of different carbon emission trading prices and growth rates on the operational strategy of the system.As an experimental demonstration,we simulated an IES coupled with an IEEE 39-node electrical grid system,a six-node heat network system,and a six-node gas network system.The simulation results confirm the effectiveness and feasibility of the proposed model.展开更多
In this paper, a Stackelberg differential game based approach is proposed to solve the bandwidth allocation problems in satellite communication network. All the satellites are divided into two groups, one has high dow...In this paper, a Stackelberg differential game based approach is proposed to solve the bandwidth allocation problems in satellite communication network. All the satellites are divided into two groups, one has high download requirements, and the other one has low download requirements. Each satellites group has its own controller for bandwidth allocation, and can get payments from the satellites for the allocated resources. The relationships between the controllers and satellites are formed as a Stackelberg game. In our model, differential equation is introduced to describe the bandwidth dynamics for the whole satellite communication network. Combine the differential equation and Stackelberg game together, we can formulate the bandwidth allocation problems in satellite communication network as a Stackelber differential game. The solutions to the proposed game is solved based the Bellman dynamic equations. Numerical simulations are given to prove the effeteness and correctness of the proposed approach.展开更多
UAV-assisted D2D networks can provide auxiliary communication for areas with poor communication facilities by using the characteristics of easy deployment of unmanned aerial vehicle(UAV),then it becomes a promising te...UAV-assisted D2D networks can provide auxiliary communication for areas with poor communication facilities by using the characteristics of easy deployment of unmanned aerial vehicle(UAV),then it becomes a promising technology.However,the coexistence of UAV and D2D aggravates the conflict of spectrum resources.In addition,when the UAV performs the communication service,it will inevitably cause the location change,which will make the original channel allocation no longer applicable.Inspired by the influence of frequent channel switching on channel allocation,we define the communication utility as a tradeoff between the throughput and channel switching cost.In the considered model,we investigate the multi-stage hierarchical spectrum access problem with maximizing aggregate communication utilities in UAV-assisted D2D networks.In particular,due to the hierarchical feature of the considered network,we adopt Stackelberg game to formulate this spectrum access problem where both the throughput and channel switching cost are considered.We prove that the proposed game has a stable Stackelberg equilibrium(SE),and the heterogeneous network based channel allocation(HN-CA)algorithm is proposed to achieve the desired solution.Simulation results verify the validity of the proposed game and show the effectiveness of the HN-CA algorithm.展开更多
To promote the utilization of renewable energy,such as photovoltaics,this paper proposes an optimal flexibility dispatch method for demand-side resources(DSR)based on the Stackelberg game theory.First,the concept of t...To promote the utilization of renewable energy,such as photovoltaics,this paper proposes an optimal flexibility dispatch method for demand-side resources(DSR)based on the Stackelberg game theory.First,the concept of the generalized DSR is analyzed and flexibility models for various DSR are constructed.Second,owing to the characteristics of small capacity but large-scale,an outer approximation is proposed to describe the aggregate flexibility of DSR.Then,the optimal flexibility dispatch model of DSR based on the Stackelberg game is established and a decentralized solution algorithm is designed to obtain the Stackelberg equilibrium.Finally,the actual data are utilized for the case study and the results show that,compared to the traditional centralized optimization method,the proposed optimal flexibility dispatch method can not only reduce the net load variability of the DSR aggregator but is beneficial for all DSR owners,which is more suitable for practical applications.展开更多
The data traffic that is accumulated at the Macro Base Station(MBS)keeps on increasing as almost all the people start using mobile phones.The MBS cannot accommodate all user’s demands,and attempts to offload some use...The data traffic that is accumulated at the Macro Base Station(MBS)keeps on increasing as almost all the people start using mobile phones.The MBS cannot accommodate all user’s demands,and attempts to offload some users to the nearby small cells so that the user could get the expected service.For the MBS to offload data traffic to an Access Point(AP),it should offer an optimal economic incentive in a way its utility is maximized.Similarly,the APs should choose an optimal traffic to admit load for the price that it gets from MBS.To balance this tradeoff between the economic incentive and the admittance load to achieve optimal offloading,Software Defined Networking(SDN)assisted Stackelberg Game(SaSG)model is proposed.In this model,the MBS selects the users carefully to aggregate the service with AP,so that the user experiencing least service gets aggregated first.The MBS uses the Received Signal Strength Indicator(RSSI)value of the users as the main parameter for aggregating a particular user for a contract period with LTE and WiFi.Each player involved in the game tries to maximize their payoff utilities,and thus,while incorporating those utilities in real-time scenario,we obtain maximum throughput per user which experiences best data service without any lack in Quality of Experience(QoE).Thus,the proposed SaSG model proves better when compared with other game theory models,and hence an optimal data offloading is achieved.展开更多
This paper mainly investigates the coordinated anti-jamming channel access problems in multiuser scenarios where there exists a tracking jammer who senses the spectrum and traces the channel with maximal receiving pow...This paper mainly investigates the coordinated anti-jamming channel access problems in multiuser scenarios where there exists a tracking jammer who senses the spectrum and traces the channel with maximal receiving power.To cope with the challenges brought by the tracking jammer,a multi-leader onefollower anti-jamming Stackelberg(MOAS)game is formulated,which is able to model the complex interactions between users and the tracking jammer.In the proposed game,users act as leaders,chose their channel access strategies and transmit firstly.The tracking jammer acts as the follower,whose objective is to find the optimal jamming strategy at each time slot.Besides,the existence of Stackelberg equilibriums(SEs)is proved,which means users reach Nash Equilibriums(NEs)for each jamming strategy while the jammer finds its best response jamming strategy for the current network access case.An active attraction based anti-jamming channel access(3ACA)algorithm is designed to reach SEs,where jammed users keep their channel access strategies unchanged to create access chances for other users.To enhance the fairness of the system,users will adjust their strategies and relearn after certain time slots to provide access chances for those users who sacrifice themselves to attract the tracking jammer.展开更多
Mobile edge caching technology is gaining more and more attention because it can effectively improve the Quality of Experience (QoE) of users and reduce backhaul burden. This paper aims to improve the utility of mobil...Mobile edge caching technology is gaining more and more attention because it can effectively improve the Quality of Experience (QoE) of users and reduce backhaul burden. This paper aims to improve the utility of mobile edge caching technology from the perspectie of caching resource management by examining a network composed of one operator, multiple users and Content Providers (CPs). The caching resource management model is constructed on the premise of fully considering the QoE of users and the servicing capability of the Base Station (BS). In order to create the best caching resource allocation scheme, the original problem is transformed into a multi-leader multi-follower Stackelberg game model through the analysis of the system model. The strategy combinations and the utility functions of players are analyzed. The existence and uniqueness of the Nash Equilibrium (NE) solution are also analyzed and proved. The optimal strategy combinations and the best responses are deduced in detail. Simulation results and analysis show that the proposed model and algorithm can achieve the optimal allocation of caching resource and improve the QoE of users.展开更多
基金supported by National Natural Science Foundation of China(No.61901229 and No.62071242)the Project of Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication Network(No.SDGC2234)+1 种基金the Open Research Project of Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology(No.NJUZDS2022-008)the Post-Doctoral Research Supporting Program of Jiangsu Province(No.SBH20).
文摘This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable their passive backscattering and active transmission to the access point(AP). We propose an efficient time scheduling scheme for network performance enhancement, based on which each sensor can always harvest energy from the PB over the entire block except its time slots allocated for passive and active information delivery. Considering the PB and wireless sensors are from two selfish service providers, we use the Stackelberg game to model the energy interaction among them. To address the non-convexity of the leader-level problem, we propose to decompose the original problem into two subproblems and solve them iteratively in an alternating manner. Specifically, the successive convex approximation, semi-definite relaxation(SDR) and variable substitution techniques are applied to find a nearoptimal solution. To evaluate the performance loss caused by the interaction between two providers, we further investigate the social welfare maximization problem. Numerical results demonstrate that compared to the benchmark schemes, the proposed scheme can achieve up to 35.4% and 38.7% utility gain for the leader and the follower, respectively.
基金supported by Guangxi Power Grid Science and Technology Project(GXKJXM20222069).
文摘The integration of photovoltaic,energy storage,direct current,and flexible load(PEDF)technologies in building power systems is an importantmeans to address the energy crisis and promote the development of green buildings.The friendly interaction between the PEDF systems and the power grid can promote the utilization of renewable energy and enhance the stability of the power grid.For this purpose,this work introduces a framework of multiple incentive mechanisms for a PEDF park,a building energy system that implements PEDF technologies.The incentive mechanisms proposed in this paper include both economic and noneconomic aspects,which is the most significant innovation of this paper.By modeling the relationship between a PEDF park and the power grid into a Stackelberg game,we demonstrate the effectiveness of these incentive measures in promoting the friendly interaction between the two entities.In this game model,the power grid determines on the prices of electricity trading and incentive subsidy,aiming to maximize its revenue while reducing the peak load of the PEDF park.On the other hand,the PEDF park make its dispatch plan according to the prices established by the grid,in order to reduce electricity consumption expense,improve electricity utility,and enhance the penetration rate of renewable energy.The results show that the proposed incentive mechanisms for the PEDF park can help to optimize energy consumption and promote sustainable energy practices.
基金supported by the Guangxi Science and Technology Major Special Project (Project Number GUIKEAA22067079-1).
文摘With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through the deployment of energy storage.To solve the problem of the interests of different subjects in the operation of the energy storage power stations(ESS)and the integrated energy multi-microgrid alliance(IEMA),this paper proposes the optimization operation method of the energy storage power station and the IEMA based on the Stackelberg game.In the upper layer,ESS optimizes charging and discharging decisions through a dynamic pricing mechanism.In the lower layer,IEMA optimizes the output of various energy conversion coupled devices within the IEMA,as well as energy interaction and demand response(DR),based on the energy interaction prices provided by ESS.The results demonstrate that the optimization strategy proposed in this paper not only effectively balances the benefits of the IEMA and ESS but also enhances energy consumption rates and reduces IEMA energy costs.
基金supported by the National Natural Science Foundation of China(Grant No.62063016)。
文摘With increasing reforms related to integrated energy systems(IESs),each energy subsystem,as a participant based on bounded rationality,significantly influences the optimal scheduling of the entire IES through mutual learning and imitation.A reasonable multiagent joint operation strategy can help this system meet its low-carbon objectives.This paper proposes a bilayer low-carbon optimal operational strategy for an IES based on the Stackelberg master-slave game and multiagent joint operation.The studied IES includes cogeneration,power-to-gas,and carbon capture systems.Based on the Stackelberg master-slave game theory,sellers are used as leaders in the upper layer to set the prices of electricity and heat,while energy producers,energy storage providers,and load aggregators are used as followers in the lower layer to adjust the operational strategy of the system.An IES bilayer optimization model based on the Stackelberg master-slave game was developed.Finally,the Karush-Kuhn-Tucker(KKT)condition and linear relaxation technology are used to convert the bilayer game model to a single layer.CPLEX,which is a mathematical program solver,is used to solve the equilibrium problem and the carbon emission trading cost of the system when the benefits of each subject reach maximum and to analyze the impact of different carbon emission trading prices and growth rates on the operational strategy of the system.As an experimental demonstration,we simulated an IES coupled with an IEEE 39-node electrical grid system,a six-node heat network system,and a six-node gas network system.The simulation results confirm the effectiveness and feasibility of the proposed model.
基金supported by National Science Foundation Project of P. R. China (No. 61501026, U1603116)
文摘In this paper, a Stackelberg differential game based approach is proposed to solve the bandwidth allocation problems in satellite communication network. All the satellites are divided into two groups, one has high download requirements, and the other one has low download requirements. Each satellites group has its own controller for bandwidth allocation, and can get payments from the satellites for the allocated resources. The relationships between the controllers and satellites are formed as a Stackelberg game. In our model, differential equation is introduced to describe the bandwidth dynamics for the whole satellite communication network. Combine the differential equation and Stackelberg game together, we can formulate the bandwidth allocation problems in satellite communication network as a Stackelber differential game. The solutions to the proposed game is solved based the Bellman dynamic equations. Numerical simulations are given to prove the effeteness and correctness of the proposed approach.
基金This work is supported by the Jiangsu Provincial Natural Science Fund for Outstanding Young Scholars(No.BK20180028)the Natural Science Foundations of China(No.61671474)+1 种基金the Jiangsu Provincial Natural Science Fund for Excellent Young Scholars(No.BK20170089)and in part by Postgraduate Research and Practice Innovation Program of Jiangsu Province under No.KYCX190188.
文摘UAV-assisted D2D networks can provide auxiliary communication for areas with poor communication facilities by using the characteristics of easy deployment of unmanned aerial vehicle(UAV),then it becomes a promising technology.However,the coexistence of UAV and D2D aggravates the conflict of spectrum resources.In addition,when the UAV performs the communication service,it will inevitably cause the location change,which will make the original channel allocation no longer applicable.Inspired by the influence of frequent channel switching on channel allocation,we define the communication utility as a tradeoff between the throughput and channel switching cost.In the considered model,we investigate the multi-stage hierarchical spectrum access problem with maximizing aggregate communication utilities in UAV-assisted D2D networks.In particular,due to the hierarchical feature of the considered network,we adopt Stackelberg game to formulate this spectrum access problem where both the throughput and channel switching cost are considered.We prove that the proposed game has a stable Stackelberg equilibrium(SE),and the heterogeneous network based channel allocation(HN-CA)algorithm is proposed to achieve the desired solution.Simulation results verify the validity of the proposed game and show the effectiveness of the HN-CA algorithm.
基金supported by Science and Technology Project of State Grid Hebei Electric Power Company(SGHE0000DKJS2000228)
文摘To promote the utilization of renewable energy,such as photovoltaics,this paper proposes an optimal flexibility dispatch method for demand-side resources(DSR)based on the Stackelberg game theory.First,the concept of the generalized DSR is analyzed and flexibility models for various DSR are constructed.Second,owing to the characteristics of small capacity but large-scale,an outer approximation is proposed to describe the aggregate flexibility of DSR.Then,the optimal flexibility dispatch model of DSR based on the Stackelberg game is established and a decentralized solution algorithm is designed to obtain the Stackelberg equilibrium.Finally,the actual data are utilized for the case study and the results show that,compared to the traditional centralized optimization method,the proposed optimal flexibility dispatch method can not only reduce the net load variability of the DSR aggregator but is beneficial for all DSR owners,which is more suitable for practical applications.
文摘The data traffic that is accumulated at the Macro Base Station(MBS)keeps on increasing as almost all the people start using mobile phones.The MBS cannot accommodate all user’s demands,and attempts to offload some users to the nearby small cells so that the user could get the expected service.For the MBS to offload data traffic to an Access Point(AP),it should offer an optimal economic incentive in a way its utility is maximized.Similarly,the APs should choose an optimal traffic to admit load for the price that it gets from MBS.To balance this tradeoff between the economic incentive and the admittance load to achieve optimal offloading,Software Defined Networking(SDN)assisted Stackelberg Game(SaSG)model is proposed.In this model,the MBS selects the users carefully to aggregate the service with AP,so that the user experiencing least service gets aggregated first.The MBS uses the Received Signal Strength Indicator(RSSI)value of the users as the main parameter for aggregating a particular user for a contract period with LTE and WiFi.Each player involved in the game tries to maximize their payoff utilities,and thus,while incorporating those utilities in real-time scenario,we obtain maximum throughput per user which experiences best data service without any lack in Quality of Experience(QoE).Thus,the proposed SaSG model proves better when compared with other game theory models,and hence an optimal data offloading is achieved.
文摘This paper mainly investigates the coordinated anti-jamming channel access problems in multiuser scenarios where there exists a tracking jammer who senses the spectrum and traces the channel with maximal receiving power.To cope with the challenges brought by the tracking jammer,a multi-leader onefollower anti-jamming Stackelberg(MOAS)game is formulated,which is able to model the complex interactions between users and the tracking jammer.In the proposed game,users act as leaders,chose their channel access strategies and transmit firstly.The tracking jammer acts as the follower,whose objective is to find the optimal jamming strategy at each time slot.Besides,the existence of Stackelberg equilibriums(SEs)is proved,which means users reach Nash Equilibriums(NEs)for each jamming strategy while the jammer finds its best response jamming strategy for the current network access case.An active attraction based anti-jamming channel access(3ACA)algorithm is designed to reach SEs,where jammed users keep their channel access strategies unchanged to create access chances for other users.To enhance the fairness of the system,users will adjust their strategies and relearn after certain time slots to provide access chances for those users who sacrifice themselves to attract the tracking jammer.
文摘Mobile edge caching technology is gaining more and more attention because it can effectively improve the Quality of Experience (QoE) of users and reduce backhaul burden. This paper aims to improve the utility of mobile edge caching technology from the perspectie of caching resource management by examining a network composed of one operator, multiple users and Content Providers (CPs). The caching resource management model is constructed on the premise of fully considering the QoE of users and the servicing capability of the Base Station (BS). In order to create the best caching resource allocation scheme, the original problem is transformed into a multi-leader multi-follower Stackelberg game model through the analysis of the system model. The strategy combinations and the utility functions of players are analyzed. The existence and uniqueness of the Nash Equilibrium (NE) solution are also analyzed and proved. The optimal strategy combinations and the best responses are deduced in detail. Simulation results and analysis show that the proposed model and algorithm can achieve the optimal allocation of caching resource and improve the QoE of users.