The suppressing design of the engine nacelle in an aircraft can benefit from the development of the prediction system for the sound fields in engine ducts which includes the prediction of the source generation and tha...The suppressing design of the engine nacelle in an aircraft can benefit from the development of the prediction system for the sound fields in engine ducts which includes the prediction of the source generation and that of sound propagation in ducts. First, the acoustic match mode principle between the source modes of rotor stator interaction noise and the propagation modes is presented in this paper. Second, by utilizing this principle, the theoretical prediction method for rotor stator interaction noise generation and its propagation and attenuation in an annular duct with multi treatments is developed. That means that the prediction of sound propagation and attenuation in the segmented ducts might no longer completely depend on the in duct mode measurements, and the investigation on the sound propagation and attenuation in ducts can be accomplished not only by acoustic mode measurement, but also by making use of the source prediction to determine the source modes excited by rotor stator interaction. The effects of fan speed, blade/vane numbers, axial spacing between rotor and stator on the in duct sound attenuation and generated sound power level before and after ducts (also including the sound power level of blade passing frequency and its harmonics at the inlet of ducts) have been numerically calculated by using this prediction method. The reliability of this prediction method is verified by reasonable agreement between the predicted results with measured results in references. By analyzing the results of calculating cases, some reference criteria are provided for the engineering design of the suppressing engine nacelle.展开更多
文摘The suppressing design of the engine nacelle in an aircraft can benefit from the development of the prediction system for the sound fields in engine ducts which includes the prediction of the source generation and that of sound propagation in ducts. First, the acoustic match mode principle between the source modes of rotor stator interaction noise and the propagation modes is presented in this paper. Second, by utilizing this principle, the theoretical prediction method for rotor stator interaction noise generation and its propagation and attenuation in an annular duct with multi treatments is developed. That means that the prediction of sound propagation and attenuation in the segmented ducts might no longer completely depend on the in duct mode measurements, and the investigation on the sound propagation and attenuation in ducts can be accomplished not only by acoustic mode measurement, but also by making use of the source prediction to determine the source modes excited by rotor stator interaction. The effects of fan speed, blade/vane numbers, axial spacing between rotor and stator on the in duct sound attenuation and generated sound power level before and after ducts (also including the sound power level of blade passing frequency and its harmonics at the inlet of ducts) have been numerically calculated by using this prediction method. The reliability of this prediction method is verified by reasonable agreement between the predicted results with measured results in references. By analyzing the results of calculating cases, some reference criteria are provided for the engineering design of the suppressing engine nacelle.