Based on the principle of the neuron MOS device,a novel matched filter structure which is easily realized by neuron MOS is presented and the details of circuit performance is analyzed.Compared to the conventional stru...Based on the principle of the neuron MOS device,a novel matched filter structure which is easily realized by neuron MOS is presented and the details of circuit performance is analyzed.Compared to the conventional structure,the number of circuit elements is decreased greatly for the same function.The test chip is fabricated in 0.35μm process,and the measured result shows that the system structure is feasible and effective.展开更多
We present a high-resolution seismic catalog for the 2021 M_(S)6.4/M_(W)6.1 Yangbi sequence.The catalog has a time range of 2021-05-01 to 2021-05-28,and contains~8,000 well located events.It captures the features of t...We present a high-resolution seismic catalog for the 2021 M_(S)6.4/M_(W)6.1 Yangbi sequence.The catalog has a time range of 2021-05-01 to 2021-05-28,and contains~8,000 well located events.It captures the features of the whole foreshock sequence and the early aftershocks.We designed a detection strategy incorporating both an artificial intelligent(AI)picker and a matched filter algorithm.Here,we adopt a hybrid AI method incorporating convolutional and recurrent neural network(CNN&RNN)for event detection and phase picking respectively(i.e.CERP),a light-weight AI picker that can be trained with small volume of data.CERP is first trained with detections from a STA/LTA and Kurtosis-based method called PAL,and then construct a rather complete template set of~4,000 events.Finally,the matched filter algorithm MESS augments the initial detections and measures differential travel times with cross-correlation,which finally results in precise relocation.This process gives 9,026 detections,among which 7,943 events can be well relocated.The catalog shows as expected power-law distribution of frequency magnitude and reveals detailed pattern of seismicity evolution.The main features are:(1)the foreshock sequence images simple fault geometry with consistent strike,but also show a variable event depth along strike;(2)the mainshock ruptures the same fault of the foreshock sequence and activate conjugate faults further to the southeast;(3)complex seismicity are developed in the post-seismic period,indicating complex triggering mechanisms.Thus,our catalog provides a reliable basis for further investigations,such as b-value studies,rupture process,and triggering relations.展开更多
In this paper,we investigate the matched filter based spectrum sensing in a more reasonable cognitive radio(CR) scenario when the primary user(PU) has more than one transmit power levels,as regulated in most standards...In this paper,we investigate the matched filter based spectrum sensing in a more reasonable cognitive radio(CR) scenario when the primary user(PU) has more than one transmit power levels,as regulated in most standards,i.e.,IEEE 802.11 Series,GSM,LTE,LTE-A,etc.This new multiple primary transmit power(MPTP) scenario is specialized by two different targets:detecting the presence of PU and identifying the power level.Compared to the traditional binary sensing where only the presence of PU is checked,SU may attain more information about the primary network(making CR more "intelligent") and design the subsequent optimization strategy.The key technology is the multiple hypothesis testing as opposed to the traditional binary hypothesis testing.We discuss two situations under whether the channel phase is known or not,and we derive the closed form solutions for decision regions and several performance metrics,from which some interesting phenomenons are observed and the related discussions are presented.Numerical examples are provided to corroborate the proposed studies.展开更多
The method of using a narrowband filter to realize matched filtering is derived.A novel method of using spectrum sampling to realize matched filtering is presented,and the method can conquer the disadvantages that the...The method of using a narrowband filter to realize matched filtering is derived.A novel method of using spectrum sampling to realize matched filtering is presented,and the method can conquer the disadvantages that the narrowband filter cannot adopt the adaptive scheduling of phased array radars and realize matched filtering for several waveforms.A novel error extraction method is proposed,which uses a time division multipath method to realize the intermediate frequency extraction.This method can save lots of space for vehicle-born radar systems,reduce the influence of amplitude and phase distortion caused by devices,and enhance the system reliability.Simulation results show that the spectrum sampling method is applicable,and the implementation of frequency spectrum sampling is elaborated.展开更多
We present a detailed catalog of 13671 earthquakes in the Eastern Tennessee Seismic Zone(ETSZ)that spans January 1,2005 to July 31,2020.We apply a matched filter detection technique on over 15 years of continuous data...We present a detailed catalog of 13671 earthquakes in the Eastern Tennessee Seismic Zone(ETSZ)that spans January 1,2005 to July 31,2020.We apply a matched filter detection technique on over 15 years of continuous data,resulting in arguably the most complete catalog of seismicity in the ETSZ yet.The magnitudes of newly detected events are determined by computing the amplitude ratio between the detections and templates using a principal component fit.We also compute the b-value for the new catalog and comparatively relocate a subset of newly detected events using XCORLOC and hypoDD,which shows a more defined structure at depth.We find the greatest concentration along and to the east of the New York-Alabama Lineament,as defined by the magnetic anomaly,supporting the argument that this feature likely is related to the generation of seismicity in the ETSZ.We examine seismicity in the vicinity of the Watts Bar Reservoir,which is located about 5 km from the epicenter of the M_(W) 4.4 December 12,2018 Decatur,Tennessee earthquake,and find possible evidence for reservoir modulated seismicity in this region.We also examine seismicity in the entire ETSZ to search for a correlation between shallow earthquakes and seasonal hydrologic changes.Our results show limited evidence for hydrologicallydriven shallow seismicity due to seasonal groundwater levels in the ETSZ,which contradicts previous studies hypothesizing that most intraplate earthquakes are associated with the dynamics of hydrologic cycles.展开更多
Estimation of the far-field centre is carried out in beam auto-alignment. In this paper, the features of the far-field of a square beam are presented. Based on these features, a phase-only matched filter is designed, ...Estimation of the far-field centre is carried out in beam auto-alignment. In this paper, the features of the far-field of a square beam are presented. Based on these features, a phase-only matched filter is designed, and the algorithm of centre estimation is developed. Using the simulated images with different kinds of noise and the 40 test images that are taken in sequence, the accuracy of this algorithm is estimated. Results show that the error is no more than one pixel for simulated noise images with a 99% probability, and the stability is restricted within one pixel for test images. Using the improved algorithm, the consumed time is reduced to 0.049 s.展开更多
In this paper,we propose a sensing scheme based on energy detection,matched filter and cyclic prefix.Both Equal Gain Combining(EGC)and optimal combination of the aforementioned detectors are investigated in cooperativ...In this paper,we propose a sensing scheme based on energy detection,matched filter and cyclic prefix.Both Equal Gain Combining(EGC)and optimal combination of the aforementioned detectors are investigated in cooperative and non-cooperative spectrum sensing scenarios.In packet transmission systems such as OFDM(Orthogonal Frequency Division Multiple access)systems,the proposed scheme takes advantage of utilizing more samples than individual detectors,i.e.,cyclic prefix,training or pilot samples,and data payload samples.The proposed combine-sensing scheme offers higher detection probability and lower false alarm probability,as compared with the performance of individual detectors over the same frame duration.Simulation results are congruent with the theoretical curves and confirm the validity of our derivations.展开更多
This paper derives an approximate formula for probability density function(PDF) of received signal-to-interference-and-noise ratio(SINR) at user terminal when matched filter(MF) is adopted at a base station(BS).This d...This paper derives an approximate formula for probability density function(PDF) of received signal-to-interference-and-noise ratio(SINR) at user terminal when matched filter(MF) is adopted at a base station(BS).This distribution of SINR can be used to make an analysis of average sum-rate,outage probability,and symbol error rate of massive MIMO downlink with MF at BS.From simulation,it is found that the derived approximate analytical expression for PDF of SINR is consistent with the simulated exact PDF from the definition of SINR in medium-scale and large-scale MIMO systems.展开更多
A new surface acoustic Wave differential quadraphase shift key(SAW DQPSK) spread spectrum (SS) signal matched filter based on the fusion of SS and differential modulation is reported. The design of multi-phase cod...A new surface acoustic Wave differential quadraphase shift key(SAW DQPSK) spread spectrum (SS) signal matched filter based on the fusion of SS and differential modulation is reported. The design of multi-phase coded SAW matched filter is proposed rather than another design of SAW DQPSK filter, which can cut in a half of the delay time of SAW DQPSK matched filter and SAW fixed delay line(FDL) used for differential demodulation. This breakthrough is made the system largely reduce a size and process much easily. This method can also be feasible in other SAW MPSK matched filter design especially when the modulation phase number is larger than 4. The design example and its experimental results are given.展开更多
In our previous work [Physical Review D,2024,109(4):043009],we introduced MSNRnet,a framework integrating deep learning and matched filtering methods for gravitational wave(GW) detection.Compared with end-to-end class...In our previous work [Physical Review D,2024,109(4):043009],we introduced MSNRnet,a framework integrating deep learning and matched filtering methods for gravitational wave(GW) detection.Compared with end-to-end classification methods,MSNRnet is physically interpretable.Multiple denoising models and astrophysical discrimination models corresponding to different parameter space were operated independently for the template prediction and selection.But the MSNRnet has a lot of computational redundancy.In this study,we propose a new framework for template prediction,which significantly improves our previous method.The new framework consists of the recursive application of denoising models and waveform classification models,which solve the problem of computational redundancy.The waveform classification network categorizes the denoised output based on the signal's time scale.To enhance the denoising performance for long-time-scale data,we upgrade the denoising model by incorporating Transformer and ResNet modules.Furthermore,we introduce a novel training approach that allows for the simultaneous training of the denoising network and waveform classification network,eliminating the need for manual annotation of the waveform dataset required in our previous method.Real-data analysis results demonstrate that our new method decreases the false alarm rate by approximately 25%,boosts the detection rate by roughly 5%,and slashes the computational cost by around 90%.The new method holds potential for future application in online GW data processing.展开更多
In passive radars, coherent integration is an essential method to achieve processing gain for target detection. The cross ambiguity function(CAF) and the method based on matched filtering are the most common approache...In passive radars, coherent integration is an essential method to achieve processing gain for target detection. The cross ambiguity function(CAF) and the method based on matched filtering are the most common approaches. The method based on matched filtering is an approximation to CAF and the procedure is:(1) divide the signal into snapshots;(2) perform matched filtering on each snapshot;(3) perform fast Fourier transform(FFT) across the snapshots. The matched filtering method is computationally affordable and can offer savings of an order of 1000 times in execution speed over that of CAF. However, matched filtering suffers from severe energy loss for high speed targets. In this paper we concentrate mainly on the matched filtering method and we use keystone transform to rectify range migration. Several factors affecting the performance of coherent integration are discussed based on the matched filtering method and keystone transform. Modified methods are introduced to improve the performance by analyzing the impacts of mismatching, precision of the keystone transform, and discretization. The modified discrete chirp Fourier transform(MDCFT) is adopted to rectify the Doppler expansion in a multi-target scenario. A novel velocity estimation method is proposed, and an extended processing scheme presented. Simulations show that the proposed algorithms improve the performance of matched filtering for high speed targets.展开更多
Matched filter is one of the key technologies to achieve high-speed data transmission. In this paper,a parallel finite-impulse response (FIR) filter structure based on polyphase filter-ing is used to achieve high-spee...Matched filter is one of the key technologies to achieve high-speed data transmission. In this paper,a parallel finite-impulse response (FIR) filter structure based on polyphase filter-ing is used to achieve high-speed matched filter in quadrature phase-shift keying (QPSK) demodulation up to 800 Mb·s-1. First,a window function is employed of to obtain impulse response of matched filter. Second,the high-speed parallel FIR structure is presented based on polyphase filtering. Then,the filter with EP2S180F1020 on the Quartus II 7.2 platform is achieved. The final results show that the design is correct and can implement high-speed matched filtering,wherein the equivalent frequency of which is up to 2 037 MHz. In addition,this scheme is easy to real-ize,which brings great value to the application of this filter in high-speed matched filters design in demodulation systems.展开更多
Elasticity imaging offers the possibility of detecting changes in elastic properties and assesses the biomechanical properties of soft tissue with increased sensitivity and spatial resolution compared with conventiona...Elasticity imaging offers the possibility of detecting changes in elastic properties and assesses the biomechanical properties of soft tissue with increased sensitivity and spatial resolution compared with conventional palpation. However, the range of applied strains is limited by the concomitant increase of echo signal decorrelation, The decorrelation is mainly introduced by diffuse scattering, while the regular scattering is highly correlated. Because the regular scattering and diffuse scattering localize with different patterns in different ranges of time-scale plane, a new method is put forward to detect the regular scattering with matched filters based on wavelet transform using Generalized Likelihood Aatio Test (GLRT). The simulation results illustrate that the change in estimated mean interscatterer spacing introduced by a SNR of -10 dB is 1.1±2.8%. Thus, by tracking the highly correlated regular scattering, the internal strain can be estimated based on the change in interscatterer spacing under the condition of large surface deformation. The experiment studies show that the internal strain can be estimated up to 10% applied deformation in phantom and 5% strain in porcine liver.展开更多
Response of adaptive matched filter, also called adaptive correlator, to multipath channel is discussed in this paper. It has been proved that the new type processor can better match with multipath chan -nel. The resu...Response of adaptive matched filter, also called adaptive correlator, to multipath channel is discussed in this paper. It has been proved that the new type processor can better match with multipath chan -nel. The results of experiment carried out on lake and in laboratory are presented. It shows that the processor has good detecting performance in time domain.展开更多
For global navigation satellite system (GNSS) signals in Gaussian and Rayleigh fading channel, a novel signal detection algorithm is proposed. Under the low frequency uncertainty case, after performing discrete cosi...For global navigation satellite system (GNSS) signals in Gaussian and Rayleigh fading channel, a novel signal detection algorithm is proposed. Under the low frequency uncertainty case, after performing discrete cosine transform (DCT) to the outputs of the partial matched filter (PMF) for every antenna, the high order com- ponents in the transforming domain will be filtered, then the equalgain (EG) combination for the inverse discrete cosine transform (IDCT) reconstructed signal would be done subsequently. Thus, due to the different frequency distribution characteristics between the noise and signals, after EG combination, the energy of signals has almost no loss and the noise energy is greatly reduced. The theoretical analysis and simulation results show that the detection algorithm can effectively improve the signal-to-noise ratio of the captured signal and increase the probability of detection under the same false alarm probability. In addition, it should be pointed out that this method can also be applied to Rayleigh fading channels with moving antenna.展开更多
This study applies a windowed frequency domain overlapped block filtering approach to acquire direct sequence signals. As a novel viewpoint, the windows not only allow pulse shaping without front-end pulse-shaping fil...This study applies a windowed frequency domain overlapped block filtering approach to acquire direct sequence signals. As a novel viewpoint, the windows not only allow pulse shaping without front-end pulse-shaping filter, but also increase the performance of the spectrum sensing unit, which can efficiently be implemented into this frequency domain receiver and may further be used for spectrum sensing in cognitive radios or narrowband interference cancellation in military radios. The proposed receiver is applicable for the initial time synchroni- zation of different signals containing a preamble. These signals include single carrier, constant envelope single carder, multicarrier, and even generalized multicarrier signals, making the proposed receiver structure a universal unit. Furthermore, the receiver can be used to perform filtering with long codes and compute the sliding correlation of an unknown periodic preamble. The receiver can further be modified to handle large Doppler shifts. We will also demonstrate herein the computational complexity and analysis of the acquisition performance in Rayleigh and Rician fading channels.展开更多
A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a ...A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a complicated environment.In this approach,the Harris algorithm is introduced to detect the corner points of the object,and the corner matching algorithm based on singular value decomposition is used to compute the firstorder weights and make particles centralize in the high likelihood area.Then the local binary pattern(LBP) operator is used to build the observation model of the target based on the color and texture features,by which the second-order weights of particles and the accurate location of the target can be obtained.Moreover,a backstepping controller is proposed to complete the whole tracking system.Simulations and experiments are carried out,and the results show that the HPF algorithm with the backstepping controller achieves stable and accurate tracking with good robustness in complex environments.展开更多
Gravitational wave detection is one of the most cutting-edge research areas in modern physics, with its success relying on advanced data analysis and signal processing techniques. This study provides a comprehensive r...Gravitational wave detection is one of the most cutting-edge research areas in modern physics, with its success relying on advanced data analysis and signal processing techniques. This study provides a comprehensive review of data analysis methods and signal processing techniques in gravitational wave detection. The research begins by introducing the characteristics of gravitational wave signals and the challenges faced in their detection, such as extremely low signal-to-noise ratios and complex noise backgrounds. It then systematically analyzes the application of time-frequency analysis methods in extracting transient gravitational wave signals, including wavelet transforms and Hilbert-Huang transforms. The study focuses on discussing the crucial role of matched filtering techniques in improving signal detection sensitivity and explores strategies for template bank optimization. Additionally, the research evaluates the potential of machine learning algorithms, especially deep learning networks, in rapidly identifying and classifying gravitational wave events. The study also analyzes the application of Bayesian inference methods in parameter estimation and model selection, as well as their advantages in handling uncertainties. However, the research also points out the challenges faced by current technologies, such as dealing with non-Gaussian noise and improving computational efficiency. To address these issues, the study proposes a hybrid analysis framework combining physical models and data-driven methods. Finally, the research looks ahead to the potential applications of quantum computing in future gravitational wave data analysis. This study provides a comprehensive theoretical foundation for the optimization and innovation of gravitational wave data analysis methods, contributing to the advancement of gravitational wave astronomy.展开更多
A new type of despreader for direct sequence spread spectrum signal is proposed. Compared with traditional despreaders, the new despreader does not contain hard decision ware or handle binary sequence any more, and th...A new type of despreader for direct sequence spread spectrum signal is proposed. Compared with traditional despreaders, the new despreader does not contain hard decision ware or handle binary sequence any more, and the locally stored spread spectrum signals are pre-modulated baseband signals (such as Gaussian minimum shift keying (GMSK) signals), which are much more similar to the received spread spectrum signals. Moreover, the missed detection probability of the despreader is about one order of magnitude lower than that of traditional ones. Based on the maximum likelihood criterion and phase probability density function of demodulated signal, a new method of ana- lyzing the despreaders’ performance is put forward, which is proved to be more accurate than traditional methods according to the numerical results. Finally, an adaptive despreader under different signal-to-noise ratios is given.展开更多
In this research, we present a seismic trace interpolation method which uses seismic data with surface-related multiples. It is different from conventional seismic data interpolation using information transformation o...In this research, we present a seismic trace interpolation method which uses seismic data with surface-related multiples. It is different from conventional seismic data interpolation using information transformation or extrapolation of adjacent channels for reconstruction of missing seismic data. In this method there are two steps, first, we construct pseudo-primaries by cross-correlation of surface multiple data to extract the missing near- offset information in multiples, which are not displayed in the acquired seismic record. Second, we correct the pseudo-primaries by applying a Least-squares Matching Filter (LMF) and RMS amplitude correction method in time and space sliding windows. Then the corrected pseudo-primaries can be used to fill the data gaps. The method is easy to implement, without the need to separate multiples and primaries. It extracts the seismic information contained by multiples for filling missing traces. The method is suitable for seismic data with surfacerelated multiples.展开更多
文摘Based on the principle of the neuron MOS device,a novel matched filter structure which is easily realized by neuron MOS is presented and the details of circuit performance is analyzed.Compared to the conventional structure,the number of circuit elements is decreased greatly for the same function.The test chip is fabricated in 0.35μm process,and the measured result shows that the system structure is feasible and effective.
基金supported jointly by National Key R&D Program of China(No.2018YFC1503400)National Natural Science Foundation of China projects(Nos.41774067,U2039204,and 42074046)+2 种基金Science for Earthquake Resilience(No.XH20082Y)US National Science Foundation(No.1941719)University of California at Riverside.
文摘We present a high-resolution seismic catalog for the 2021 M_(S)6.4/M_(W)6.1 Yangbi sequence.The catalog has a time range of 2021-05-01 to 2021-05-28,and contains~8,000 well located events.It captures the features of the whole foreshock sequence and the early aftershocks.We designed a detection strategy incorporating both an artificial intelligent(AI)picker and a matched filter algorithm.Here,we adopt a hybrid AI method incorporating convolutional and recurrent neural network(CNN&RNN)for event detection and phase picking respectively(i.e.CERP),a light-weight AI picker that can be trained with small volume of data.CERP is first trained with detections from a STA/LTA and Kurtosis-based method called PAL,and then construct a rather complete template set of~4,000 events.Finally,the matched filter algorithm MESS augments the initial detections and measures differential travel times with cross-correlation,which finally results in precise relocation.This process gives 9,026 detections,among which 7,943 events can be well relocated.The catalog shows as expected power-law distribution of frequency magnitude and reveals detailed pattern of seismicity evolution.The main features are:(1)the foreshock sequence images simple fault geometry with consistent strike,but also show a variable event depth along strike;(2)the mainshock ruptures the same fault of the foreshock sequence and activate conjugate faults further to the southeast;(3)complex seismicity are developed in the post-seismic period,indicating complex triggering mechanisms.Thus,our catalog provides a reliable basis for further investigations,such as b-value studies,rupture process,and triggering relations.
基金supported in part by the National Basic Research Program of China(973 Program)under Grant 2013CB336600the Beijing Natural Science Foundation under Grant 4131003+1 种基金the National Natural Science Foundation of China under Grant{61201187,61422109}the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions under Grant YETP0110
文摘In this paper,we investigate the matched filter based spectrum sensing in a more reasonable cognitive radio(CR) scenario when the primary user(PU) has more than one transmit power levels,as regulated in most standards,i.e.,IEEE 802.11 Series,GSM,LTE,LTE-A,etc.This new multiple primary transmit power(MPTP) scenario is specialized by two different targets:detecting the presence of PU and identifying the power level.Compared to the traditional binary sensing where only the presence of PU is checked,SU may attain more information about the primary network(making CR more "intelligent") and design the subsequent optimization strategy.The key technology is the multiple hypothesis testing as opposed to the traditional binary hypothesis testing.We discuss two situations under whether the channel phase is known or not,and we derive the closed form solutions for decision regions and several performance metrics,from which some interesting phenomenons are observed and the related discussions are presented.Numerical examples are provided to corroborate the proposed studies.
文摘The method of using a narrowband filter to realize matched filtering is derived.A novel method of using spectrum sampling to realize matched filtering is presented,and the method can conquer the disadvantages that the narrowband filter cannot adopt the adaptive scheduling of phased array radars and realize matched filtering for several waveforms.A novel error extraction method is proposed,which uses a time division multipath method to realize the intermediate frequency extraction.This method can save lots of space for vehicle-born radar systems,reduce the influence of amplitude and phase distortion caused by devices,and enhance the system reliability.Simulation results show that the spectrum sampling method is applicable,and the implementation of frequency spectrum sampling is elaborated.
基金supported by USGS NHERP grant G20AP00039Matched Filter detection was run on the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation (NSF) grant number ACI-1548562it used the Bridges system, which is supported by NSF award number ACI-1445606, at the Pittsburgh Supercomputing Center (PSC).
文摘We present a detailed catalog of 13671 earthquakes in the Eastern Tennessee Seismic Zone(ETSZ)that spans January 1,2005 to July 31,2020.We apply a matched filter detection technique on over 15 years of continuous data,resulting in arguably the most complete catalog of seismicity in the ETSZ yet.The magnitudes of newly detected events are determined by computing the amplitude ratio between the detections and templates using a principal component fit.We also compute the b-value for the new catalog and comparatively relocate a subset of newly detected events using XCORLOC and hypoDD,which shows a more defined structure at depth.We find the greatest concentration along and to the east of the New York-Alabama Lineament,as defined by the magnetic anomaly,supporting the argument that this feature likely is related to the generation of seismicity in the ETSZ.We examine seismicity in the vicinity of the Watts Bar Reservoir,which is located about 5 km from the epicenter of the M_(W) 4.4 December 12,2018 Decatur,Tennessee earthquake,and find possible evidence for reservoir modulated seismicity in this region.We also examine seismicity in the entire ETSZ to search for a correlation between shallow earthquakes and seasonal hydrologic changes.Our results show limited evidence for hydrologicallydriven shallow seismicity due to seasonal groundwater levels in the ETSZ,which contradicts previous studies hypothesizing that most intraplate earthquakes are associated with the dynamics of hydrologic cycles.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 007SQ804)Japan-Korea-China Cooperative Project on High Energy Density Science for Laser Fusion Energy
文摘Estimation of the far-field centre is carried out in beam auto-alignment. In this paper, the features of the far-field of a square beam are presented. Based on these features, a phase-only matched filter is designed, and the algorithm of centre estimation is developed. Using the simulated images with different kinds of noise and the 40 test images that are taken in sequence, the accuracy of this algorithm is estimated. Results show that the error is no more than one pixel for simulated noise images with a 99% probability, and the stability is restricted within one pixel for test images. Using the improved algorithm, the consumed time is reduced to 0.049 s.
文摘In this paper,we propose a sensing scheme based on energy detection,matched filter and cyclic prefix.Both Equal Gain Combining(EGC)and optimal combination of the aforementioned detectors are investigated in cooperative and non-cooperative spectrum sensing scenarios.In packet transmission systems such as OFDM(Orthogonal Frequency Division Multiple access)systems,the proposed scheme takes advantage of utilizing more samples than individual detectors,i.e.,cyclic prefix,training or pilot samples,and data payload samples.The proposed combine-sensing scheme offers higher detection probability and lower false alarm probability,as compared with the performance of individual detectors over the same frame duration.Simulation results are congruent with the theoretical curves and confirm the validity of our derivations.
基金Supported by the National Natural Science Foundation of China(No.61271230,61301107)the Fundamental Research Funds for the Central Universities(No.30920130122004)Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2013D02)
文摘This paper derives an approximate formula for probability density function(PDF) of received signal-to-interference-and-noise ratio(SINR) at user terminal when matched filter(MF) is adopted at a base station(BS).This distribution of SINR can be used to make an analysis of average sum-rate,outage probability,and symbol error rate of massive MIMO downlink with MF at BS.From simulation,it is found that the derived approximate analytical expression for PDF of SINR is consistent with the simulated exact PDF from the definition of SINR in medium-scale and large-scale MIMO systems.
基金National High Technology Research and Development Programof China(2002AA325040)
文摘A new surface acoustic Wave differential quadraphase shift key(SAW DQPSK) spread spectrum (SS) signal matched filter based on the fusion of SS and differential modulation is reported. The design of multi-phase coded SAW matched filter is proposed rather than another design of SAW DQPSK filter, which can cut in a half of the delay time of SAW DQPSK matched filter and SAW fixed delay line(FDL) used for differential demodulation. This breakthrough is made the system largely reduce a size and process much easily. This method can also be feasible in other SAW MPSK matched filter design especially when the modulation phase number is larger than 4. The design example and its experimental results are given.
基金supported by the Gravitational-Wave Open Science Center,a service of LIGO Laboratory,the LIGO Scientific Collaboration,and the Virgo Collaborationsupported by the National Key Research and Development Program of China (Grant No.2021YFC2203001)+1 种基金the National Natural Science Foundation of China (Grants Nos.11920101003,12021003,12364024,and 11864014)the Natural Science Foundation of Jiangxi (Grant Nos.20224BAB211012,and 20224BAB201023)。
文摘In our previous work [Physical Review D,2024,109(4):043009],we introduced MSNRnet,a framework integrating deep learning and matched filtering methods for gravitational wave(GW) detection.Compared with end-to-end classification methods,MSNRnet is physically interpretable.Multiple denoising models and astrophysical discrimination models corresponding to different parameter space were operated independently for the template prediction and selection.But the MSNRnet has a lot of computational redundancy.In this study,we propose a new framework for template prediction,which significantly improves our previous method.The new framework consists of the recursive application of denoising models and waveform classification models,which solve the problem of computational redundancy.The waveform classification network categorizes the denoised output based on the signal's time scale.To enhance the denoising performance for long-time-scale data,we upgrade the denoising model by incorporating Transformer and ResNet modules.Furthermore,we introduce a novel training approach that allows for the simultaneous training of the denoising network and waveform classification network,eliminating the need for manual annotation of the waveform dataset required in our previous method.Real-data analysis results demonstrate that our new method decreases the false alarm rate by approximately 25%,boosts the detection rate by roughly 5%,and slashes the computational cost by around 90%.The new method holds potential for future application in online GW data processing.
文摘In passive radars, coherent integration is an essential method to achieve processing gain for target detection. The cross ambiguity function(CAF) and the method based on matched filtering are the most common approaches. The method based on matched filtering is an approximation to CAF and the procedure is:(1) divide the signal into snapshots;(2) perform matched filtering on each snapshot;(3) perform fast Fourier transform(FFT) across the snapshots. The matched filtering method is computationally affordable and can offer savings of an order of 1000 times in execution speed over that of CAF. However, matched filtering suffers from severe energy loss for high speed targets. In this paper we concentrate mainly on the matched filtering method and we use keystone transform to rectify range migration. Several factors affecting the performance of coherent integration are discussed based on the matched filtering method and keystone transform. Modified methods are introduced to improve the performance by analyzing the impacts of mismatching, precision of the keystone transform, and discretization. The modified discrete chirp Fourier transform(MDCFT) is adopted to rectify the Doppler expansion in a multi-target scenario. A novel velocity estimation method is proposed, and an extended processing scheme presented. Simulations show that the proposed algorithms improve the performance of matched filtering for high speed targets.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (2006AA040307)
文摘Matched filter is one of the key technologies to achieve high-speed data transmission. In this paper,a parallel finite-impulse response (FIR) filter structure based on polyphase filter-ing is used to achieve high-speed matched filter in quadrature phase-shift keying (QPSK) demodulation up to 800 Mb·s-1. First,a window function is employed of to obtain impulse response of matched filter. Second,the high-speed parallel FIR structure is presented based on polyphase filtering. Then,the filter with EP2S180F1020 on the Quartus II 7.2 platform is achieved. The final results show that the design is correct and can implement high-speed matched filtering,wherein the equivalent frequency of which is up to 2 037 MHz. In addition,this scheme is easy to real-ize,which brings great value to the application of this filter in high-speed matched filters design in demodulation systems.
基金This work is supported by Nature Science foundation of China (No. 39470212) and Trans-centuryTraining Program for Talents from
文摘Elasticity imaging offers the possibility of detecting changes in elastic properties and assesses the biomechanical properties of soft tissue with increased sensitivity and spatial resolution compared with conventional palpation. However, the range of applied strains is limited by the concomitant increase of echo signal decorrelation, The decorrelation is mainly introduced by diffuse scattering, while the regular scattering is highly correlated. Because the regular scattering and diffuse scattering localize with different patterns in different ranges of time-scale plane, a new method is put forward to detect the regular scattering with matched filters based on wavelet transform using Generalized Likelihood Aatio Test (GLRT). The simulation results illustrate that the change in estimated mean interscatterer spacing introduced by a SNR of -10 dB is 1.1±2.8%. Thus, by tracking the highly correlated regular scattering, the internal strain can be estimated based on the change in interscatterer spacing under the condition of large surface deformation. The experiment studies show that the internal strain can be estimated up to 10% applied deformation in phantom and 5% strain in porcine liver.
文摘Response of adaptive matched filter, also called adaptive correlator, to multipath channel is discussed in this paper. It has been proved that the new type processor can better match with multipath chan -nel. The results of experiment carried out on lake and in laboratory are presented. It shows that the processor has good detecting performance in time domain.
基金supported by the National Natural Science Foundation of China(61172138)the Natural Science Basic Research Plan in Shaanxi Province of China(2013JQ8040)+1 种基金the Fundamental Research Funds for the Central Universities(K5051302015K5051302040)
文摘For global navigation satellite system (GNSS) signals in Gaussian and Rayleigh fading channel, a novel signal detection algorithm is proposed. Under the low frequency uncertainty case, after performing discrete cosine transform (DCT) to the outputs of the partial matched filter (PMF) for every antenna, the high order com- ponents in the transforming domain will be filtered, then the equalgain (EG) combination for the inverse discrete cosine transform (IDCT) reconstructed signal would be done subsequently. Thus, due to the different frequency distribution characteristics between the noise and signals, after EG combination, the energy of signals has almost no loss and the noise energy is greatly reduced. The theoretical analysis and simulation results show that the detection algorithm can effectively improve the signal-to-noise ratio of the captured signal and increase the probability of detection under the same false alarm probability. In addition, it should be pointed out that this method can also be applied to Rayleigh fading channels with moving antenna.
文摘This study applies a windowed frequency domain overlapped block filtering approach to acquire direct sequence signals. As a novel viewpoint, the windows not only allow pulse shaping without front-end pulse-shaping filter, but also increase the performance of the spectrum sensing unit, which can efficiently be implemented into this frequency domain receiver and may further be used for spectrum sensing in cognitive radios or narrowband interference cancellation in military radios. The proposed receiver is applicable for the initial time synchroni- zation of different signals containing a preamble. These signals include single carrier, constant envelope single carder, multicarrier, and even generalized multicarrier signals, making the proposed receiver structure a universal unit. Furthermore, the receiver can be used to perform filtering with long codes and compute the sliding correlation of an unknown periodic preamble. The receiver can further be modified to handle large Doppler shifts. We will also demonstrate herein the computational complexity and analysis of the acquisition performance in Rayleigh and Rician fading channels.
基金supported by the National Natural Science Foundation of China(61304097)the Projects of Major International(Regional)Joint Research Program NSFC(61120106010)the Foundation for Innovation Research Groups of the National National Natural Science Foundation of China(61321002)
文摘A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a complicated environment.In this approach,the Harris algorithm is introduced to detect the corner points of the object,and the corner matching algorithm based on singular value decomposition is used to compute the firstorder weights and make particles centralize in the high likelihood area.Then the local binary pattern(LBP) operator is used to build the observation model of the target based on the color and texture features,by which the second-order weights of particles and the accurate location of the target can be obtained.Moreover,a backstepping controller is proposed to complete the whole tracking system.Simulations and experiments are carried out,and the results show that the HPF algorithm with the backstepping controller achieves stable and accurate tracking with good robustness in complex environments.
文摘Gravitational wave detection is one of the most cutting-edge research areas in modern physics, with its success relying on advanced data analysis and signal processing techniques. This study provides a comprehensive review of data analysis methods and signal processing techniques in gravitational wave detection. The research begins by introducing the characteristics of gravitational wave signals and the challenges faced in their detection, such as extremely low signal-to-noise ratios and complex noise backgrounds. It then systematically analyzes the application of time-frequency analysis methods in extracting transient gravitational wave signals, including wavelet transforms and Hilbert-Huang transforms. The study focuses on discussing the crucial role of matched filtering techniques in improving signal detection sensitivity and explores strategies for template bank optimization. Additionally, the research evaluates the potential of machine learning algorithms, especially deep learning networks, in rapidly identifying and classifying gravitational wave events. The study also analyzes the application of Bayesian inference methods in parameter estimation and model selection, as well as their advantages in handling uncertainties. However, the research also points out the challenges faced by current technologies, such as dealing with non-Gaussian noise and improving computational efficiency. To address these issues, the study proposes a hybrid analysis framework combining physical models and data-driven methods. Finally, the research looks ahead to the potential applications of quantum computing in future gravitational wave data analysis. This study provides a comprehensive theoretical foundation for the optimization and innovation of gravitational wave data analysis methods, contributing to the advancement of gravitational wave astronomy.
基金Supported by National Natural Science Foundation of China (No. 60572147) National "111" Program of Introducing Talents of Discipline to Universities (No. B08038)
文摘A new type of despreader for direct sequence spread spectrum signal is proposed. Compared with traditional despreaders, the new despreader does not contain hard decision ware or handle binary sequence any more, and the locally stored spread spectrum signals are pre-modulated baseband signals (such as Gaussian minimum shift keying (GMSK) signals), which are much more similar to the received spread spectrum signals. Moreover, the missed detection probability of the despreader is about one order of magnitude lower than that of traditional ones. Based on the maximum likelihood criterion and phase probability density function of demodulated signal, a new method of ana- lyzing the despreaders’ performance is put forward, which is proved to be more accurate than traditional methods according to the numerical results. Finally, an adaptive despreader under different signal-to-noise ratios is given.
基金sponsored by:the National Basic Research Program of China (973 Program) (2007CB209605)the National Natural Science Foundation of China (40974073)the National Hi-tech Research and Development Program of China (863 Program) (2009AA06Z206)
文摘In this research, we present a seismic trace interpolation method which uses seismic data with surface-related multiples. It is different from conventional seismic data interpolation using information transformation or extrapolation of adjacent channels for reconstruction of missing seismic data. In this method there are two steps, first, we construct pseudo-primaries by cross-correlation of surface multiple data to extract the missing near- offset information in multiples, which are not displayed in the acquired seismic record. Second, we correct the pseudo-primaries by applying a Least-squares Matching Filter (LMF) and RMS amplitude correction method in time and space sliding windows. Then the corrected pseudo-primaries can be used to fill the data gaps. The method is easy to implement, without the need to separate multiples and primaries. It extracts the seismic information contained by multiples for filling missing traces. The method is suitable for seismic data with surfacerelated multiples.