A simple, efficient, automatic and universal method to fulfill displacementanalysis of a great deal of mechanisms regenerated by Yan's mechanism creative theory has beendeveloped. For a regenerated mechanism, at f...A simple, efficient, automatic and universal method to fulfill displacementanalysis of a great deal of mechanisms regenerated by Yan's mechanism creative theory has beendeveloped. For a regenerated mechanism, at first, the method identifies its type and structure andchanges it into a rigid structure by fixing the ground link and the input link. And then this rigidstructure is decomposed into a set of basic kinematic chains (BKCs). By matching the type of BKC,the displacement analysis equations can be set up, and all possible configurations, in whichpositions of all movable links are considered, can be given out.展开更多
We propose accurate boundary treatments for a heterogeneous atomic chain, in terms of matching boundary conditions (MBCs). The main challenge lies in reproducing the physical reflection across the boundary to a corr...We propose accurate boundary treatments for a heterogeneous atomic chain, in terms of matching boundary conditions (MBCs). The main challenge lies in reproducing the physical reflection across the boundary to a correct amount. With reflection coefficients we demonstrate that the accuracy is improved when more atoms are used under the boundary condition. The inclusion of an atom in the embedded sublattice B may considerably enhance the performance. Numerical testing illustrates the effectiveness of the proposed MBCs.展开更多
基金This project is supported by Teaching Research Award Program for Outstanding Young Teachers of MOE (No.1999076)by Shanghai Sustentation Foundation, China.
文摘A simple, efficient, automatic and universal method to fulfill displacementanalysis of a great deal of mechanisms regenerated by Yan's mechanism creative theory has beendeveloped. For a regenerated mechanism, at first, the method identifies its type and structure andchanges it into a rigid structure by fixing the ground link and the input link. And then this rigidstructure is decomposed into a set of basic kinematic chains (BKCs). By matching the type of BKC,the displacement analysis equations can be set up, and all possible configurations, in whichpositions of all movable links are considered, can be given out.
基金Supported by the Chun-Tsung Fundthe National Natural Science Foundation of China under Grant Nos 11272009 and 11521202
文摘We propose accurate boundary treatments for a heterogeneous atomic chain, in terms of matching boundary conditions (MBCs). The main challenge lies in reproducing the physical reflection across the boundary to a correct amount. With reflection coefficients we demonstrate that the accuracy is improved when more atoms are used under the boundary condition. The inclusion of an atom in the embedded sublattice B may considerably enhance the performance. Numerical testing illustrates the effectiveness of the proposed MBCs.