In this study,a new image-based method for the extraction and characterization of pore-throat network for unconventional hydrocarbon storage and exploitation is proposed.“Pore-throat solidity”,which is analogous to ...In this study,a new image-based method for the extraction and characterization of pore-throat network for unconventional hydrocarbon storage and exploitation is proposed.“Pore-throat solidity”,which is analogous to particle solidity,and a new method for automatic identification of pores and throats in tight sandstone oil reservoirs are introduced.Additionally,the“pore-throat combination”and“pure pore”are defined and distinguished by drawing the cumulative probability curve of the pore-throat solidity and by selecting an appropriate cutoff point.When the discrete grid set is recognized as a pore-throat combination,Legendre ellipse fitting and minimum Feret diameter are used.When the pore and throat grid sets are identified as pure pores,the pore diameter can be directly calculated.Using the new method,the analytical results for the physical parameters and pore radius agree well with most prior studies.The results comparing the maximum ball and the new model could also prove the accuracy of the latter's in micro and nano scales.The new model provides a more practical theoretical basis and a new calculation method for the rapid and accurate evaluation of the complex processes of oil migration.展开更多
Oil transport is greatly affected by heterogeneous pore–throat structures present in shale.It is therefore very important to accurately characterize pore–throat structures.Additionally,it remains unclear how pore–t...Oil transport is greatly affected by heterogeneous pore–throat structures present in shale.It is therefore very important to accurately characterize pore–throat structures.Additionally,it remains unclear how pore–throat structures affect oil transport capacity.In this paper,using finite element(FE)simulation and mathematical modeling,we calculated the hydrodynamic resistance for four pore–throat structure.In addition,the influence of pore throat structure on shale oil permeability is analyzed.According to the results,the hydrodynamic resistance of different pore throat structures can vary by 300%.The contribution of additional resistance caused by streamline bending is also in excess of 40%,even without slip length.Fur-thermore,Pore–throat structures can affect apparent permeability by more than 60%on the REV scale,and this influence increases with heterogeneity of pore size distribution,organic matter content,and organic matter number.Clearly,modeling shale oil flow requires consideration of porous–throat structure and additional resistance,otherwise oil recovery and flow capacity may be overestimated.展开更多
Aiming at the complicated problem of the genesis of high-quality hybrid sedimentary rocks,the pore-throat systems,controlling factors and fluid mobility of hybrid sedimentary rocks in the Permian Lucaogou Formation in...Aiming at the complicated problem of the genesis of high-quality hybrid sedimentary rocks,the pore-throat systems,controlling factors and fluid mobility of hybrid sedimentary rocks in the Permian Lucaogou Formation in Jimusar Sag were examined.The results show that the hybrid sedimentary rocks contain 5 types of pore-throat system,intergranular(Type A),mixed intergranular-dissolved-intercrystalline(Type B),dissolved(Type C),mixed dissolved-intercrystalline(Type D)and intercrystalline(Type E)ones.The pore-throat systems are controlled by 3 major factors,the component content and arrangement(CCA)of hybrid sedimentary rocks,sedimentary environment and diagenesis.CCA controls the matrix support mode of hybrid sedimentary rocks,and therefore controls the types and changes of pore-throat system.The sedimentary environment mainly controls the macroscopic distribution of pore-throat system,i.e.,hybrid sedimentary rocks deposited in the near source and high-energy environment are characterized by high content of coarse-grained component,granular/interbedded-support mode,and development of Type A and Type B pore-throat systems.Hybrid sedimentary rocks deposited in the medium-energy environment far from source are characterized by dolomitic/mud support mode and Type C and Type D pore-throat systems.Hybrid sedimentary rocks deposited in low-energy environment far from source have mainly Type E and Type D pore-throat systems.Diagenetic processes such as compaction and calcite cementation make the proportions of Type A and Type C pore-throat systems decrease further.In the hybrid sedimentary process of sandy-mud,pore-throat system types show a change of"A→B→C→D",in that of dolomite-sand,pore-throat system types show a change of"A→C→D→E"or"B→D→E",and in that of dolomite-mud,pore-throat system types show a change of"D→E",which are affected in details by the contents of coarse-grain component,feldspar and dolomite.The reservoir with Type A pore-throats has the best physical properties and fluid mobility,and the reservoirs with Type D and Type E pore-throats have the poorest.The movable fluid distribution is related to the matrix support mode,and the larger pores in hybrid sedimentary rocks of dolomite/mud support mode have no obvious advantage in fluid mobility.The findings of this study provide a geological basis for evaluating and building reasonable interpretation model of hybrid sedimentary rocks sweet spot.展开更多
The microscopic heterogeneity of pore-throat structures in tight sandstone is a crucial parameter for understanding the transport mechanism of fluid flow.In this work,we firstly developed the new procedure to characte...The microscopic heterogeneity of pore-throat structures in tight sandstone is a crucial parameter for understanding the transport mechanism of fluid flow.In this work,we firstly developed the new procedure to characterize the pore size distribution(PSD)and throat size distribution(TSD)by combining the nuclear magnetic resonance(NMR),cast thin section(CTS),and constant-rate mercury injection(CRMI)tests,and used the permeability estimated model to verify the full-scale PSD and TSD.Then,we respectively analyzed the fractal feature of the pore and throat,and characterized the heterogeneity of pores and throats.Finally,we elaborated the effect of the pore and throat heterogeneity on the gas-phase seepage capacity base on the analysis of the simple capillary tube model and gas-flooding experiment.The results showed that(1)The PSD and TSD of the tight sandstone sample ranged from 0.01 to 10 mm and from 0.1 to 57 mm,respectively,mainly contributed by the micropores and mesopores.Meanwhile,the permeability estimated by the PSD and TSD was consistent with the experimental permeability,and relative error was lower than 8%.(2)The PSD and TSD exhibited multifractal characteristics,and singularity strength range,Δα,could be used as the indicator for characterizing the heterogeneity of pore and throat.Furthermore,the throat of the sample showed stronger heterogeneity than that the pore.(3)The throats played an important role for the fluid transport in the tight sandstone,and the effect of the throat heterogeneity on the gas-phase seepage capacity was different under the lower and higher injection pressure.The macropores and micropores maybe respectively become the preferential migration pathways at the lower and higher injection pressure.In the end,the identification plate was established in our paper,and could be described the relationship among the throat heterogeneity,injection pressure,permeability and flow path of the gas phase in the tight sandstone.展开更多
With the aim of better understanding the tight gas reservoirs in the Zizhou area of east Ordos Basin,a total of 222 samples were collected from 50 wells for a series of experiments.In this study,three pore-throat comb...With the aim of better understanding the tight gas reservoirs in the Zizhou area of east Ordos Basin,a total of 222 samples were collected from 50 wells for a series of experiments.In this study,three pore-throat combination types in sandstones were revealed and confirmed to play a controlling role in the distribution of throat size and the characteristics of gas-water relative permeability.The type-I sandstones are dominated by intercrystalline micropores connected by cluster throats,of which the distribution curves of throat size are narrow and have a strong single peak(peak ratio>30%).The pores in the type-II sandstones dominantly consist of secondary dissolution pores and intercrystalline micropores,and throats mainly occur as slice-shaped throats along cleavages between rigid grain margins and cluster throats in clay cement.The distribution curves of throat size for the type-II sandstones show a bimodal distribution with a substantial low-value region between the peaks(peak ratio<15%).Primary intergranular pores and secondary intergranular pores are mainly found in type-III samples,which are connected by various throats.The throat size distribution curves of type-III sandstones show a nearly normal distribution with low kurtosis(peak ratio<10%),and the micro-scale throat radii(>0.5μm)constitute a large proportion.From type-I to type-III sandstones,the irreducible water saturation(Swo)decreased;furthermore,the slope of the curves of Krw/Krg in two-phase saturation zone decreased and the two-phase saturation zone increased,indicating that the gas relative flow ability increased.Variations of the permeability exist in sandstones with different porethroat combination types,which indicate the type-III sandstones are better reservoirs,followed by type-II sandstones and type-I sandstones.As an important factor affecting the reservoir quality,the pore-throat combination type in sandstones is the cumulative expression of lithology and diagenetic modifications with strong heterogeneity.展开更多
The microstructure differences of the Triassic Chang 6 and Chang 8 members tight reservoirs in the Longdong area of Ordos Basin were compared by means of cast thin sections, scanning electron microscope, X-ray diffrac...The microstructure differences of the Triassic Chang 6 and Chang 8 members tight reservoirs in the Longdong area of Ordos Basin were compared by means of cast thin sections, scanning electron microscope, X-ray diffraction, and constant rate mercury injection. Their pore evolution models were established, and the effects of main diagenesis on densification were examined. The throat is the main factor controlling the physical properties of the Chang 6 and Chang 8 members reservoirs: The lower the permeability, the smaller and the more concentrated the throat radius and the larger the proportion of the throats in the effective storage space. There are several obvious differences between Chang 6 and Chang 8 members:(1) with the increase of permeability, the contribution of the relative large throats to the permeability in the Chang 8 member reservoir is more than that in the Chang 6 member reservoir;(2) the control effect on pore-throat ratio of the nano-throats in the Chang 6 member reservoir is more significant. The sedimentary action determines the primary pore structure of the Chang 6 and Chang 8 members sand bodies, and the diagenesis is the main factor controlling the densification of the reservoirs. Because of the difference in rock fabrics and the chlorite content of Chang 6 and Chang 8, the strong compaction resulted in less porosity reduction(17%) of the Chang 81 reservoir with larger buried depth and larger ground temperature than the Chang 63 reservoir(19%). The siliceous, calcareous and clay minerals cement filling the pores and blocking the pore throat, which is the key factor causing the big differences between the reservoir permeability of Chang 6 and Chang 8 members.展开更多
On the basis of the characterization of microscopic pore-throats in shale oil reservoirs by high-pressure mercury intrusion technique, a grading evaluation standard of shale oil reservoirs and a lower limit for reserv...On the basis of the characterization of microscopic pore-throats in shale oil reservoirs by high-pressure mercury intrusion technique, a grading evaluation standard of shale oil reservoirs and a lower limit for reservoir formation were established. Simultaneously, a new method for the classification of shale oil flow units based on logging data was established. A new classification scheme for shale oil reservoirs was proposed according to the inflection points and fractal features of mercury injection curves: microscopic pore-throats(less than 25 nm), small pore-throats(25-100 nm), medium pore-throats(100-1 000 nm) and big pore-throats(greater than 1 000 nm). Correspondingly, the shale reservoirs are divided into four classes, I, II, III and IV according to the number of microscopic pores they contain, and the average pore-throat radii corresponding to the dividing points are 150 nm, 70 nm and 10 nm respectively. By using the correlation between permeability and pore-throat radius, the permeability thresholds for the reservoir classification are determined at 1.00× 10^(-3) μm^2, 0.40×10^(-3) μm^2 and 0.05×10^(-3) μm^2 respectively. By using the exponential relationship between porosity and permeability of the same hydrodynamic flow unit, a new method was set up to evaluate the reservoir flow belt index and to identify shale oil flow units with logging data. The application in the Dongying sag shows that the standard proposed is suitable for grading evaluation of shale oil reservoirs.展开更多
The pore throat structure characteristics of Paleogene tight sandstone and sandy conglomerate in the Jiyang depression are studied using cast thin section,conventional mercury injection,constant rate mercury injection...The pore throat structure characteristics of Paleogene tight sandstone and sandy conglomerate in the Jiyang depression are studied using cast thin section,conventional mercury injection,constant rate mercury injection and micro CT scanning data,and a reservoir classification scheme based on pore throat structure parameters is established.The material composition and structural characteristics of tight reservoirs are analyzed by casting thin section data.The pore throat structure characteristics of tight reservoirs are studied by conventional mercury injection,constant rate mercury injection and micro CT scanning.Ten pore throat structure parameters are analyzed by cluster analysis.Based on the classification results and oil test results,the classification scheme of Paleogene tight reservoirs is established.The Paleogene tight reservoirs in the Jiyang depression have the characteristics of macropores and microthroats,with pores in micron scale,throats in nano-submicron scale,and wide variation of ratio of pore radius to throat radius.The permeability of the tight reservoir is controlled by throat radius,the smaller the difference between pore radius and throat radius,and the more uniform the pore throat size,the higher the permeability will be.The lower limits of average pore throat radius for the tight sandstone and tight sandy conglomerate to produce industrial oil flow without fracturing are 0.6μm and 0.8μm,respectively.Reservoirs that can produce industrial oil flow only after fracturing have an average pore-throat radius between 0.2-0.6μm,and reservoirs with average pore throat radius less than 0.2μm are ineffective reservoirs under the current fracturing techniques.Different types of tight sandstone and sandy conglomerate reservoirs are classified and evaluated,which are well applied in exploratory evaluation.展开更多
Based on scanning electron microscopy and mercury porosimmetry,a large number of experimental data of pores and pore throats of tight sandstone reservoirs are obtained,and the characteristics of pore types,capillary p...Based on scanning electron microscopy and mercury porosimmetry,a large number of experimental data of pores and pore throats of tight sandstone reservoirs are obtained,and the characteristics of pore types,capillary pressure curves and quantitative parameters of pore throats of Yanchang Formation in Huangling mining area are studied.The results show that the main reservoir space types of Yanchang Formation sandstone are primary intergranular pores and feldspar dissolution pores.The pore-throat structure is medium-small pore and thin-small throat type,and the sorting is good to medium.The mercury porosimmetry curve shows a slightly coarse-thin skew.Combining the morphological characteristics of the mercury porosimmetry capillary pressure curve and the quantitative parameter characteristics of pore throats,the Yanchang Formation s micro pore structure is divided into types I,II,III,and IV.Tight oil reservoirs with type I and II pore structure characteristics are favorable.This study has reference significance for the later evaluation of tight sandstone reservoirs in Huangling mining area.展开更多
The study or pore characteristics is or great importance in reservoir evaluation,especially in deeply buried s andstone.It controls the storage mechanism and reservoir fluid properties of the permeable horizons.The fi...The study or pore characteristics is or great importance in reservoir evaluation,especially in deeply buried s andstone.It controls the storage mechanism and reservoir fluid properties of the permeable horizons.The first member of Eocene Shahejie Formation(Esl)sandstone is classified as feldspathic litharenite and lithic arkose.The present research investigates the pore characteristics and reservoir features of the deeply buried sandstone reservoir of Esl member of Shahejie Formation.The techniques including thin-section petrography,mercury injection capillary pressure(MICP),scanning electron microscopy and laser scanning confocal microscope images were used to demarcate the pores including primary intergranular pores and secondary intergranular,intragranular,dissolution and fracture pores.Mercury injection test and routine core analysis were led to demarcate the pore network characteristics of the studied reservoir.Pore size and pore throat size distribution are acquired from mercury injection test.Porosity values range from 0.5%to 30%,and permeability ranges 0.006-7000 mD.Pore radii of coarse-grained sandstone and fine-grained sandstone range from 0.2 to>4μm and 1 nm to 1.60μm,respectively,by MICP analysis.The mineral composition also plays an important role in protecting the pores with pressure from failure.Fractured sandstone and coarse-grained sandstone consist of large and interconnected pores that enhance the reservoir porosity and permeability,whereas fine-grained sandstone and siltstone consist of numerous pores but not well interconnected,and so they consist of high porosity with low permeability.展开更多
The tight sandstones of the Upper Triassic Xujiahe Formation(T_3x) constitute important gas reservoirs in western Sichuan.The Xujiahe sandstones are characterized by low to very low porosity (av.5.22%and 3.62%) fo...The tight sandstones of the Upper Triassic Xujiahe Formation(T_3x) constitute important gas reservoirs in western Sichuan.The Xujiahe sandstones are characterized by low to very low porosity (av.5.22%and 3.62%) for the T_3x^4 and T_3x^2 sandstones,respectively),extremely low permeability(av. 0.060 mD and 0.058 mD for the T_3x^4 and T_3x^2 sandstones,respectively),strong heterogeneity,micronano pore throat,and poor pore throat sorting.As a result of complex pore structure and the occurrence of fractures,weak correlations exist between petrophysical properties and pore throat size,demonstrating that porosity or pore throat size alone does not serve as a good permeability predictor.Much improved correlations can be obtained between permeability and porosity when pore throat radii are incorporated. Correlations between porosity,permeability,and pore throat radii corresponding to different saturations of mercury were established,showing that the pore throat radius at 20%mercury saturation(R_(20)) is the best permeability predictor.Multivariate regression analysis and artificial neural network(ANN) methods were used to establish permeability prediction models and the unique characteristics of neural networks enable them to be more successful in predicting permeability than the multivariate regression model.In addition, four petrophysical rock types can be identified based on the distributions of R_(20),each exhibiting distinct petrophysical properties and corresponding to different flow units.展开更多
Tight sandstone gas(hereafter"tight gas")has become a subject of unconventional gas exploration globally.The large-scale development and use of tight gas resources in the USA,in particular,facilitated the ra...Tight sandstone gas(hereafter"tight gas")has become a subject of unconventional gas exploration globally.The large-scale development and use of tight gas resources in the USA,in particular,facilitated the rapid rebound of natural gas production in the USA,in addition to driving the rapid development of tight gas worldwide.In the eastern Ordos Basin,the Upper Paleozoic feature includes multiple layers of gas,a shallow depth,and notable potential for exploration and development.However,the reservoirs in the area are relatively tight,exhibit strong heterogeneity,and possess a complex micropore structure,thus restricting the eff ective economic development of oil and gas.Thus,research on the primary parameters controlling pore throat structure and the seepage capability of low-permeability reservoirs will be beneficial for the effcient exploration and development of natural gas in the eastern Ordos Basin.The parameters of reservoir porosity and percolation ability,as well as permeability,were analyzed using systematic sampling of the of the Upper Paleozoic Benxi,Taiyuan,and Shanxi Formations in the eastern Ordos Basin,constant-rate mercury injection experiments,nuclear magnetic resonance analysis,and gas–water-phase experimental studies.The results indicate that reservoir porosity is controlled by the effective pore volume and number,whereas permeability is controlled by the largest throat radius,rather than the average.The effective pore volume controls the movable fluid saturation,while reservoir percolation capability is controlled by the effective pore volume,irreducible water saturation,and size of the gas–water two-phase seepage zone.展开更多
Porous media have a wide range of applications in production and life, as well as in science and technology. The study of flow resistance in porous media has a great effect on industrial and agricultural production. T...Porous media have a wide range of applications in production and life, as well as in science and technology. The study of flow resistance in porous media has a great effect on industrial and agricultural production. The flow resistance of fluid flow through a 20-mm glass sphere bed is studied experimentally. It is found that there is a significant deviation between the Ergun equation and the experimental data. A staggered pore-throat model is established to investigate the flow resistance in randomly packed porous media. A hypothesis is made that the particles are staggered in a regular triangle arrangement. An analytical formulation of the flow resistance in random porous media is derived. There are no empirical constants in the formulation and every parameter has a specific physical meaning. The formulation predictions are in good agreement with the experimental data. The deviation is within the range of 25%. This shows that the staggered pore-throat model is reasonable and is expected to be verified by more experiments and extended to other porous media.展开更多
The reservoir rock facies is presented by its principal indieators to show the aspects of sedimentary facies,diagenetic change and oil-gas indication. These indicators used by the author are 1) the petrologic──of wh...The reservoir rock facies is presented by its principal indieators to show the aspects of sedimentary facies,diagenetic change and oil-gas indication. These indicators used by the author are 1) the petrologic──of which the sedimentary facies and vitrinite reflectance are included, 2) the physical ── pore/throat di-ameter ratio and coordination number of throat connecting pore, and 3) the geochemical──photochemical parameters of individual organic inclusion. Based on the above mentioned quantitative indicators,the defined reservoir rock facies may not only be used for itself evaluation, but also may be put in facies column or facies-palaeogeographic map to predict or to trace oil-gas reservoir. Microscope photometry,micro-FT-IR and Laser Raman methods were used for studying all the aforesaid parameters by means of thinned polished sections from core or cemented cuttings, except the 3-D others, from parallel and vertical to bedding or some duplicate core samples, that the rose fluorescein preparation must be soaked in for the convenience of studying pore throat structure.展开更多
Finding an accurate method for estimating permeability aside from well logs has been a difficult task for many years.The most commonly used methods targeted towards regression technique to understand the correlation b...Finding an accurate method for estimating permeability aside from well logs has been a difficult task for many years.The most commonly used methods targeted towards regression technique to understand the correlation between pore throat radii,porosity and permeability are Winland and Pittman equation approaches.While these methods are very common among petrophysicists,they do not give a good prediction in certain cases.Consequently,this paper investigates the relationship among porosity,permeability,and pore throat radii using three methods such as multiple regression analysis,artificial neural network(ANN),and adaptive neuro-fuzzy inference system(ANFIS)for application in transition zone permeability modeling.Firstly,a comprehensive mercury injection capillary pressure(MICP)test was conducted using 228 transition zone carbonate core samples from a field located in the Middle-East region.Multiple regression analysis was later performed to estimate the permeability using pore throat and porosity measurement.For the ANN,a two-layer feed-forward neural network with sigmoid hidden neurons and a linear output neuron was used.The technique involves training,validation,and testing of input/output data.However,for the ANFIS method,a hybrid optimization consisting of least-square and backpropagation gradient descent methods with a subtractive clustering technique was used.The ANFIS combines both the artificial neural network and fuzzy logic inference system(FIS)for the training,validation,and testing of input/output data.The results show that the best correlation for the multiple regression technique is achieved for pore throat radii with 35%mercury saturation(R35).However,for both the ANN and ANFIS techniques,pore throat radii with 55%mercury saturation(R55)gives the best result.Both the ANN and ANFIS are later found to be more effective and efficient and thus recommended as compared with the multiple regression technique commonly used in the industry.展开更多
基金jointly supported by Beijing Natural Science Foundation(No.8232054)Young Elite Scientists Sponsorship Program by CAST(No.YESS20220094)+2 种基金Young Elite Scientists Sponsorship Program by BAST(No.BYESS2023182)Youth Innovation Promotion Association CAS(No.2023021)National Natural Science Foundation of China(No.41902132)。
文摘In this study,a new image-based method for the extraction and characterization of pore-throat network for unconventional hydrocarbon storage and exploitation is proposed.“Pore-throat solidity”,which is analogous to particle solidity,and a new method for automatic identification of pores and throats in tight sandstone oil reservoirs are introduced.Additionally,the“pore-throat combination”and“pure pore”are defined and distinguished by drawing the cumulative probability curve of the pore-throat solidity and by selecting an appropriate cutoff point.When the discrete grid set is recognized as a pore-throat combination,Legendre ellipse fitting and minimum Feret diameter are used.When the pore and throat grid sets are identified as pure pores,the pore diameter can be directly calculated.Using the new method,the analytical results for the physical parameters and pore radius agree well with most prior studies.The results comparing the maximum ball and the new model could also prove the accuracy of the latter's in micro and nano scales.The new model provides a more practical theoretical basis and a new calculation method for the rapid and accurate evaluation of the complex processes of oil migration.
基金supported by the National Natural Science Foundation of China(52274056,U22B2075).
文摘Oil transport is greatly affected by heterogeneous pore–throat structures present in shale.It is therefore very important to accurately characterize pore–throat structures.Additionally,it remains unclear how pore–throat structures affect oil transport capacity.In this paper,using finite element(FE)simulation and mathematical modeling,we calculated the hydrodynamic resistance for four pore–throat structure.In addition,the influence of pore throat structure on shale oil permeability is analyzed.According to the results,the hydrodynamic resistance of different pore throat structures can vary by 300%.The contribution of additional resistance caused by streamline bending is also in excess of 40%,even without slip length.Fur-thermore,Pore–throat structures can affect apparent permeability by more than 60%on the REV scale,and this influence increases with heterogeneity of pore size distribution,organic matter content,and organic matter number.Clearly,modeling shale oil flow requires consideration of porous–throat structure and additional resistance,otherwise oil recovery and flow capacity may be overestimated.
基金Supported by the National Key Basic Research and Development Program(2015CB250906)National Natural Science Foundation of China(41972139,41922015)Special Funds for Basic Scientific Research in Central Universities(18CX02069A)。
文摘Aiming at the complicated problem of the genesis of high-quality hybrid sedimentary rocks,the pore-throat systems,controlling factors and fluid mobility of hybrid sedimentary rocks in the Permian Lucaogou Formation in Jimusar Sag were examined.The results show that the hybrid sedimentary rocks contain 5 types of pore-throat system,intergranular(Type A),mixed intergranular-dissolved-intercrystalline(Type B),dissolved(Type C),mixed dissolved-intercrystalline(Type D)and intercrystalline(Type E)ones.The pore-throat systems are controlled by 3 major factors,the component content and arrangement(CCA)of hybrid sedimentary rocks,sedimentary environment and diagenesis.CCA controls the matrix support mode of hybrid sedimentary rocks,and therefore controls the types and changes of pore-throat system.The sedimentary environment mainly controls the macroscopic distribution of pore-throat system,i.e.,hybrid sedimentary rocks deposited in the near source and high-energy environment are characterized by high content of coarse-grained component,granular/interbedded-support mode,and development of Type A and Type B pore-throat systems.Hybrid sedimentary rocks deposited in the medium-energy environment far from source are characterized by dolomitic/mud support mode and Type C and Type D pore-throat systems.Hybrid sedimentary rocks deposited in low-energy environment far from source have mainly Type E and Type D pore-throat systems.Diagenetic processes such as compaction and calcite cementation make the proportions of Type A and Type C pore-throat systems decrease further.In the hybrid sedimentary process of sandy-mud,pore-throat system types show a change of"A→B→C→D",in that of dolomite-sand,pore-throat system types show a change of"A→C→D→E"or"B→D→E",and in that of dolomite-mud,pore-throat system types show a change of"D→E",which are affected in details by the contents of coarse-grain component,feldspar and dolomite.The reservoir with Type A pore-throats has the best physical properties and fluid mobility,and the reservoirs with Type D and Type E pore-throats have the poorest.The movable fluid distribution is related to the matrix support mode,and the larger pores in hybrid sedimentary rocks of dolomite/mud support mode have no obvious advantage in fluid mobility.The findings of this study provide a geological basis for evaluating and building reasonable interpretation model of hybrid sedimentary rocks sweet spot.
基金financial support from the Youth Science and Technology Innovation Team of Southwest Petroleum University(No.2018CXTD10)the National Natural Science Foundation Project of China(No.51874248 and No.U19B2010).
文摘The microscopic heterogeneity of pore-throat structures in tight sandstone is a crucial parameter for understanding the transport mechanism of fluid flow.In this work,we firstly developed the new procedure to characterize the pore size distribution(PSD)and throat size distribution(TSD)by combining the nuclear magnetic resonance(NMR),cast thin section(CTS),and constant-rate mercury injection(CRMI)tests,and used the permeability estimated model to verify the full-scale PSD and TSD.Then,we respectively analyzed the fractal feature of the pore and throat,and characterized the heterogeneity of pores and throats.Finally,we elaborated the effect of the pore and throat heterogeneity on the gas-phase seepage capacity base on the analysis of the simple capillary tube model and gas-flooding experiment.The results showed that(1)The PSD and TSD of the tight sandstone sample ranged from 0.01 to 10 mm and from 0.1 to 57 mm,respectively,mainly contributed by the micropores and mesopores.Meanwhile,the permeability estimated by the PSD and TSD was consistent with the experimental permeability,and relative error was lower than 8%.(2)The PSD and TSD exhibited multifractal characteristics,and singularity strength range,Δα,could be used as the indicator for characterizing the heterogeneity of pore and throat.Furthermore,the throat of the sample showed stronger heterogeneity than that the pore.(3)The throats played an important role for the fluid transport in the tight sandstone,and the effect of the throat heterogeneity on the gas-phase seepage capacity was different under the lower and higher injection pressure.The macropores and micropores maybe respectively become the preferential migration pathways at the lower and higher injection pressure.In the end,the identification plate was established in our paper,and could be described the relationship among the throat heterogeneity,injection pressure,permeability and flow path of the gas phase in the tight sandstone.
基金supported by the Natural Science Foundation of China (grant No. 41772130)
文摘With the aim of better understanding the tight gas reservoirs in the Zizhou area of east Ordos Basin,a total of 222 samples were collected from 50 wells for a series of experiments.In this study,three pore-throat combination types in sandstones were revealed and confirmed to play a controlling role in the distribution of throat size and the characteristics of gas-water relative permeability.The type-I sandstones are dominated by intercrystalline micropores connected by cluster throats,of which the distribution curves of throat size are narrow and have a strong single peak(peak ratio>30%).The pores in the type-II sandstones dominantly consist of secondary dissolution pores and intercrystalline micropores,and throats mainly occur as slice-shaped throats along cleavages between rigid grain margins and cluster throats in clay cement.The distribution curves of throat size for the type-II sandstones show a bimodal distribution with a substantial low-value region between the peaks(peak ratio<15%).Primary intergranular pores and secondary intergranular pores are mainly found in type-III samples,which are connected by various throats.The throat size distribution curves of type-III sandstones show a nearly normal distribution with low kurtosis(peak ratio<10%),and the micro-scale throat radii(>0.5μm)constitute a large proportion.From type-I to type-III sandstones,the irreducible water saturation(Swo)decreased;furthermore,the slope of the curves of Krw/Krg in two-phase saturation zone decreased and the two-phase saturation zone increased,indicating that the gas relative flow ability increased.Variations of the permeability exist in sandstones with different porethroat combination types,which indicate the type-III sandstones are better reservoirs,followed by type-II sandstones and type-I sandstones.As an important factor affecting the reservoir quality,the pore-throat combination type in sandstones is the cumulative expression of lithology and diagenetic modifications with strong heterogeneity.
基金Supported by the China National Science and Technology Major Project(20162X050500062011ZX05044)the National Natural Science Foundation of China(41102083)
文摘The microstructure differences of the Triassic Chang 6 and Chang 8 members tight reservoirs in the Longdong area of Ordos Basin were compared by means of cast thin sections, scanning electron microscope, X-ray diffraction, and constant rate mercury injection. Their pore evolution models were established, and the effects of main diagenesis on densification were examined. The throat is the main factor controlling the physical properties of the Chang 6 and Chang 8 members reservoirs: The lower the permeability, the smaller and the more concentrated the throat radius and the larger the proportion of the throats in the effective storage space. There are several obvious differences between Chang 6 and Chang 8 members:(1) with the increase of permeability, the contribution of the relative large throats to the permeability in the Chang 8 member reservoir is more than that in the Chang 6 member reservoir;(2) the control effect on pore-throat ratio of the nano-throats in the Chang 6 member reservoir is more significant. The sedimentary action determines the primary pore structure of the Chang 6 and Chang 8 members sand bodies, and the diagenesis is the main factor controlling the densification of the reservoirs. Because of the difference in rock fabrics and the chlorite content of Chang 6 and Chang 8, the strong compaction resulted in less porosity reduction(17%) of the Chang 81 reservoir with larger buried depth and larger ground temperature than the Chang 63 reservoir(19%). The siliceous, calcareous and clay minerals cement filling the pores and blocking the pore throat, which is the key factor causing the big differences between the reservoir permeability of Chang 6 and Chang 8 members.
基金Supported by the National Natural Science Foundation of China(41330313,41402122)China National Science and Technology Major Project(2017ZX05049004-003)+1 种基金Research Project Funded by the SINOPEC Corp.(P15028)Fundamental Research Funds for the Central Universities(15CX05046A,15CX07004A,17CX02074)
文摘On the basis of the characterization of microscopic pore-throats in shale oil reservoirs by high-pressure mercury intrusion technique, a grading evaluation standard of shale oil reservoirs and a lower limit for reservoir formation were established. Simultaneously, a new method for the classification of shale oil flow units based on logging data was established. A new classification scheme for shale oil reservoirs was proposed according to the inflection points and fractal features of mercury injection curves: microscopic pore-throats(less than 25 nm), small pore-throats(25-100 nm), medium pore-throats(100-1 000 nm) and big pore-throats(greater than 1 000 nm). Correspondingly, the shale reservoirs are divided into four classes, I, II, III and IV according to the number of microscopic pores they contain, and the average pore-throat radii corresponding to the dividing points are 150 nm, 70 nm and 10 nm respectively. By using the correlation between permeability and pore-throat radius, the permeability thresholds for the reservoir classification are determined at 1.00× 10^(-3) μm^2, 0.40×10^(-3) μm^2 and 0.05×10^(-3) μm^2 respectively. By using the exponential relationship between porosity and permeability of the same hydrodynamic flow unit, a new method was set up to evaluate the reservoir flow belt index and to identify shale oil flow units with logging data. The application in the Dongying sag shows that the standard proposed is suitable for grading evaluation of shale oil reservoirs.
文摘The pore throat structure characteristics of Paleogene tight sandstone and sandy conglomerate in the Jiyang depression are studied using cast thin section,conventional mercury injection,constant rate mercury injection and micro CT scanning data,and a reservoir classification scheme based on pore throat structure parameters is established.The material composition and structural characteristics of tight reservoirs are analyzed by casting thin section data.The pore throat structure characteristics of tight reservoirs are studied by conventional mercury injection,constant rate mercury injection and micro CT scanning.Ten pore throat structure parameters are analyzed by cluster analysis.Based on the classification results and oil test results,the classification scheme of Paleogene tight reservoirs is established.The Paleogene tight reservoirs in the Jiyang depression have the characteristics of macropores and microthroats,with pores in micron scale,throats in nano-submicron scale,and wide variation of ratio of pore radius to throat radius.The permeability of the tight reservoir is controlled by throat radius,the smaller the difference between pore radius and throat radius,and the more uniform the pore throat size,the higher the permeability will be.The lower limits of average pore throat radius for the tight sandstone and tight sandy conglomerate to produce industrial oil flow without fracturing are 0.6μm and 0.8μm,respectively.Reservoirs that can produce industrial oil flow only after fracturing have an average pore-throat radius between 0.2-0.6μm,and reservoirs with average pore throat radius less than 0.2μm are ineffective reservoirs under the current fracturing techniques.Different types of tight sandstone and sandy conglomerate reservoirs are classified and evaluated,which are well applied in exploratory evaluation.
文摘Based on scanning electron microscopy and mercury porosimmetry,a large number of experimental data of pores and pore throats of tight sandstone reservoirs are obtained,and the characteristics of pore types,capillary pressure curves and quantitative parameters of pore throats of Yanchang Formation in Huangling mining area are studied.The results show that the main reservoir space types of Yanchang Formation sandstone are primary intergranular pores and feldspar dissolution pores.The pore-throat structure is medium-small pore and thin-small throat type,and the sorting is good to medium.The mercury porosimmetry curve shows a slightly coarse-thin skew.Combining the morphological characteristics of the mercury porosimmetry capillary pressure curve and the quantitative parameter characteristics of pore throats,the Yanchang Formation s micro pore structure is divided into types I,II,III,and IV.Tight oil reservoirs with type I and II pore structure characteristics are favorable.This study has reference significance for the later evaluation of tight sandstone reservoirs in Huangling mining area.
基金funded by the Natural Science Foundation of China Project(No.41602138)National Science and Technology Special Grant(No.2016ZX05006007)+1 种基金China Postdoctoral Science Foundation-funded Project(2015M580617,2017T100524)the Fundamental Research Funds for the Central Universities(15CX08001A)
文摘The study or pore characteristics is or great importance in reservoir evaluation,especially in deeply buried s andstone.It controls the storage mechanism and reservoir fluid properties of the permeable horizons.The first member of Eocene Shahejie Formation(Esl)sandstone is classified as feldspathic litharenite and lithic arkose.The present research investigates the pore characteristics and reservoir features of the deeply buried sandstone reservoir of Esl member of Shahejie Formation.The techniques including thin-section petrography,mercury injection capillary pressure(MICP),scanning electron microscopy and laser scanning confocal microscope images were used to demarcate the pores including primary intergranular pores and secondary intergranular,intragranular,dissolution and fracture pores.Mercury injection test and routine core analysis were led to demarcate the pore network characteristics of the studied reservoir.Pore size and pore throat size distribution are acquired from mercury injection test.Porosity values range from 0.5%to 30%,and permeability ranges 0.006-7000 mD.Pore radii of coarse-grained sandstone and fine-grained sandstone range from 0.2 to>4μm and 1 nm to 1.60μm,respectively,by MICP analysis.The mineral composition also plays an important role in protecting the pores with pressure from failure.Fractured sandstone and coarse-grained sandstone consist of large and interconnected pores that enhance the reservoir porosity and permeability,whereas fine-grained sandstone and siltstone consist of numerous pores but not well interconnected,and so they consist of high porosity with low permeability.
基金supported by the Important National Science&Technology Specific Project (2008ZX05002-004)
文摘The tight sandstones of the Upper Triassic Xujiahe Formation(T_3x) constitute important gas reservoirs in western Sichuan.The Xujiahe sandstones are characterized by low to very low porosity (av.5.22%and 3.62%) for the T_3x^4 and T_3x^2 sandstones,respectively),extremely low permeability(av. 0.060 mD and 0.058 mD for the T_3x^4 and T_3x^2 sandstones,respectively),strong heterogeneity,micronano pore throat,and poor pore throat sorting.As a result of complex pore structure and the occurrence of fractures,weak correlations exist between petrophysical properties and pore throat size,demonstrating that porosity or pore throat size alone does not serve as a good permeability predictor.Much improved correlations can be obtained between permeability and porosity when pore throat radii are incorporated. Correlations between porosity,permeability,and pore throat radii corresponding to different saturations of mercury were established,showing that the pore throat radius at 20%mercury saturation(R_(20)) is the best permeability predictor.Multivariate regression analysis and artificial neural network(ANN) methods were used to establish permeability prediction models and the unique characteristics of neural networks enable them to be more successful in predicting permeability than the multivariate regression model.In addition, four petrophysical rock types can be identified based on the distributions of R_(20),each exhibiting distinct petrophysical properties and corresponding to different flow units.
基金supported by the National Natural Science Foundation of China(Grants Nos.41390451 and 41172101)the National Key Research Project of China(No.2016YFC0601003)
文摘Tight sandstone gas(hereafter"tight gas")has become a subject of unconventional gas exploration globally.The large-scale development and use of tight gas resources in the USA,in particular,facilitated the rapid rebound of natural gas production in the USA,in addition to driving the rapid development of tight gas worldwide.In the eastern Ordos Basin,the Upper Paleozoic feature includes multiple layers of gas,a shallow depth,and notable potential for exploration and development.However,the reservoirs in the area are relatively tight,exhibit strong heterogeneity,and possess a complex micropore structure,thus restricting the eff ective economic development of oil and gas.Thus,research on the primary parameters controlling pore throat structure and the seepage capability of low-permeability reservoirs will be beneficial for the effcient exploration and development of natural gas in the eastern Ordos Basin.The parameters of reservoir porosity and percolation ability,as well as permeability,were analyzed using systematic sampling of the of the Upper Paleozoic Benxi,Taiyuan,and Shanxi Formations in the eastern Ordos Basin,constant-rate mercury injection experiments,nuclear magnetic resonance analysis,and gas–water-phase experimental studies.The results indicate that reservoir porosity is controlled by the effective pore volume and number,whereas permeability is controlled by the largest throat radius,rather than the average.The effective pore volume controls the movable fluid saturation,while reservoir percolation capability is controlled by the effective pore volume,irreducible water saturation,and size of the gas–water two-phase seepage zone.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB720402)Appling Technology Research and Development Fund from Inner Mongolia,China(Grant No.20130310)College Creative Group Research Program from Inner Mongolia,China(Grant No.NMGIRT1406)
文摘Porous media have a wide range of applications in production and life, as well as in science and technology. The study of flow resistance in porous media has a great effect on industrial and agricultural production. The flow resistance of fluid flow through a 20-mm glass sphere bed is studied experimentally. It is found that there is a significant deviation between the Ergun equation and the experimental data. A staggered pore-throat model is established to investigate the flow resistance in randomly packed porous media. A hypothesis is made that the particles are staggered in a regular triangle arrangement. An analytical formulation of the flow resistance in random porous media is derived. There are no empirical constants in the formulation and every parameter has a specific physical meaning. The formulation predictions are in good agreement with the experimental data. The deviation is within the range of 25%. This shows that the staggered pore-throat model is reasonable and is expected to be verified by more experiments and extended to other porous media.
文摘The reservoir rock facies is presented by its principal indieators to show the aspects of sedimentary facies,diagenetic change and oil-gas indication. These indicators used by the author are 1) the petrologic──of which the sedimentary facies and vitrinite reflectance are included, 2) the physical ── pore/throat di-ameter ratio and coordination number of throat connecting pore, and 3) the geochemical──photochemical parameters of individual organic inclusion. Based on the above mentioned quantitative indicators,the defined reservoir rock facies may not only be used for itself evaluation, but also may be put in facies column or facies-palaeogeographic map to predict or to trace oil-gas reservoir. Microscope photometry,micro-FT-IR and Laser Raman methods were used for studying all the aforesaid parameters by means of thinned polished sections from core or cemented cuttings, except the 3-D others, from parallel and vertical to bedding or some duplicate core samples, that the rose fluorescein preparation must be soaked in for the convenience of studying pore throat structure.
基金The authors appreciate the Abu Dhabi National Oil Company(ADNOC)the ADNOC R&D Oil-Subcommittee for funding and supporting this work(RDProj.084-RCM)。
文摘Finding an accurate method for estimating permeability aside from well logs has been a difficult task for many years.The most commonly used methods targeted towards regression technique to understand the correlation between pore throat radii,porosity and permeability are Winland and Pittman equation approaches.While these methods are very common among petrophysicists,they do not give a good prediction in certain cases.Consequently,this paper investigates the relationship among porosity,permeability,and pore throat radii using three methods such as multiple regression analysis,artificial neural network(ANN),and adaptive neuro-fuzzy inference system(ANFIS)for application in transition zone permeability modeling.Firstly,a comprehensive mercury injection capillary pressure(MICP)test was conducted using 228 transition zone carbonate core samples from a field located in the Middle-East region.Multiple regression analysis was later performed to estimate the permeability using pore throat and porosity measurement.For the ANN,a two-layer feed-forward neural network with sigmoid hidden neurons and a linear output neuron was used.The technique involves training,validation,and testing of input/output data.However,for the ANFIS method,a hybrid optimization consisting of least-square and backpropagation gradient descent methods with a subtractive clustering technique was used.The ANFIS combines both the artificial neural network and fuzzy logic inference system(FIS)for the training,validation,and testing of input/output data.The results show that the best correlation for the multiple regression technique is achieved for pore throat radii with 35%mercury saturation(R35).However,for both the ANN and ANFIS techniques,pore throat radii with 55%mercury saturation(R55)gives the best result.Both the ANN and ANFIS are later found to be more effective and efficient and thus recommended as compared with the multiple regression technique commonly used in the industry.