Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as...Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as a case study and employing the Criteria Importance Through Intercriteria Correlation(CRITIC)method,a modified model of coupling degree was developed to evaluate the car-rying capacity of water and land resources systems endowment and utilization,as well as their coupling coordination degree from 2013 to 2020.Our findings indicate that the water and land resources of Yulin are diminishing due to declines in agriculture,higher industrial water use,and wetland shrinkage.However,reallocating domestic water for ecological sustainability and reducing sloping farmland can mitigate this trend of decline.Temporally,as the coupling coordination between water and land resources system endowment in Yulin continuously improved,the coupling coordination between water and land resources system utilization first decreased and then in-creased with 2016 as the turning point.Spatially,the carrying capacity of water and land resources systems,the coupling coordination degree between water and land resources system endowment,and the coupling coordination degree between water and land resources system utilization in Yulin exhibited the same pattern of being higher in the six northern counties than in the six southern counties.Improving the water resources endowment is vital for the highly efficient use of water and land resources.展开更多
Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Prov...Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Province is confronted with the problem of insufficient water resources reserve.Based on the Coupled Ground-Water and Surface-Water Flow Model(GSFLOW),this paper evaluates the response of water resources in the basin to changes in land use patterns,optimizes the land use pattern,improves the ecological and economic benefits,and the efficiency of various spatial development,providing a reference for ecological protection and high-quality development of the Yellow River Basin.The research shows that the land use pattern in the Guanzhong Basin should be further optimized.Under the condition of considering ecological and economic development,the percentage change of the optimum area of farmland,forest,grassland,water area,and urban area compared with the current land use area ratio is+2.3,+2.4,-6.1,+0.2,and+1.6,respectively.The economic and ecological value of land increases by14.1%and 3.1%,respectively,and the number of water resources can increase by 2.5%.展开更多
The countries of Central Asia are collectively known as the five "-stans": Uzbekistan, Kyrgyzstan, Turkmenistan, Tajikistan and Kazakhstan. In recent times, the Central Asian region has been affected by the ...The countries of Central Asia are collectively known as the five "-stans": Uzbekistan, Kyrgyzstan, Turkmenistan, Tajikistan and Kazakhstan. In recent times, the Central Asian region has been affected by the shrinkage of the Aral Sea, widespread desertification, soil salinization, biodiversity loss, frequent sand storms, and many other ecological disasters. This paper is a review article based upon the collection, identification and collation of previous studies of environmental changes and regional developments in Central Asia in the past 30 years. Most recent studies have reached a consensus that the temperature rise in Central Asia is occurring faster than the global average. This warming trend will not only result in a higher evaporation in the basin oases, but also to a significant retreat of glaciers in the mountainous areas. Water is the key to sustainable development in the arid and semi-arid regions in Central Asia. The uneven distribution, over consumption, and pollution of water resources in Central Asia have caused severe water supply problems, which have been affecting regional harmony and development for the past 30 years. The widespread and significant land use changes in the 1990 s could be used to improve our understanding of natural variability and human interaction in the region. There has been a positive trend of trans-border cooperation among the Central Asian countries in recent years. International attention has grown and research projects have been initiated to provide water and ecosystem protection in Central Asia. However, the agreements that have been reached might not be able to deliver practical action in time to prevent severe ecological disasters. Water management should be based on hydrographic borders and ministries should be able to make timely decisions without political intervention. Fully integrated management of water resources, land use and industrial development is essential in Central Asia. The ecological crisis should provide sufficient motivation to reach a consensus on unified water management throughout the region.展开更多
In this paper, the problems of rational use, protection and management of water and irrigated land resources of Uzbekistan are discussed. Uzbekistan is using more than 50% water resources of the region and therefore i...In this paper, the problems of rational use, protection and management of water and irrigated land resources of Uzbekistan are discussed. Uzbekistan is using more than 50% water resources of the region and therefore it’s more vulnerable to the problems of water deficiency and pollution caused by mismanagement, use of outdated technologies, and climate change impact. Utilization of water resources on main branches of economy (irrigation, industry and drinking water supply) from 2000-2009 and in some cases beyond this period was analyzed. Based on the data analyzed, the conditions of irrigated land degradation in Uzbekistan are estimated. The results of this analysis suggest several possibilities toward a sustainable use of irrigated lands: i) reduction of the groundwater table depth;ii) decrease of the level of mineralization of groundwater, and iii) improvement of ameliorative conditions of irrigated lands. The causes resulting in degradation of the irrigated lands and practical measures on the reduction of salinization of the irrigated lands are also recommended.展开更多
Hexi region is located in the northwest arid zone in China,being both the base of industry and agriculture,and the prop of developing northwestern China on a large scale in the next century.On the basis of the study o...Hexi region is located in the northwest arid zone in China,being both the base of industry and agriculture,and the prop of developing northwestern China on a large scale in the next century.On the basis of the study on exploitation and utilization process of water and land resources in past 40 years,and present productivity,this paper approaches the utilization trend and development potential of water and land resources;analyses the characteristics,problems and directions of resource utilization in the future;and proposes the countermeasures of rational development of water and land resources.展开更多
After the analysis of food security of Shandong Province since 1990s, based on the change of grain output and per unit grain yield, it was considered that food production of Shandong Province was generally stable; thr...After the analysis of food security of Shandong Province since 1990s, based on the change of grain output and per unit grain yield, it was considered that food production of Shandong Province was generally stable; through comparing the proportion of per capita possession of grains and per unit grain yield of Shandong Province in the whole country, it revealed that they were higher than the national average level. On this basis, the relationship between land-water resources and food security had been analyzed, and it summarized that Shandong water resources were insufficient, agricultural water was not enough and water had been seriously polluted; and that cultivated area was large and the overall quality was high. Meanwhile, it had analyzed the spatial pattern of land-water resources and the loss of water and soil. Finally, suggestions for the sustainable use of land-water resources in Shandong Province based on food security had been proposed. It should enhance the construction of basic agricultural facilities and implement united dispatching of multiple water resources; strengthen the supervision of cultivated land resources and comprehensively develop reserve resources of cultivated lands; and intensify the treatment of land-water resources and prevention of the loss of water and soil in key areas.展开更多
Urban development in arid and semi-arid regions is largely constrained by fragile physical environ- ments. The characteristics of an urban settlement are different from those in other regions of China. This paper anal...Urban development in arid and semi-arid regions is largely constrained by fragile physical environ- ments. The characteristics of an urban settlement are different from those in other regions of China. This paper analyses the coupling characteristics and spatio-temporal variations for oasis urban development and water-land resources at the northern slopes of the Tianshan Mountains by principal component analysis and a coupling degree model. The result shows that the degree and change in regional use of water and land resources are different among the studied cities/counties during their development. The built-up areas of these cities/counties have changed little with increasing populations and urbanization levels, which well reflects that the urban development in arid and semi-arid regions is limited by oasis areas. Per capita amount of water supplied, however, presented a trend of slowed growth with increasing levels of urbanization. Water consumption gradually increased with urban development and the improvement of people's living standards, accompanied by enhanced water use efficiency. The level of urbanization can be assessed through the coupling degree between oasis urban development and the use of water and land resources. A high coupling degree represents a high level of comprehensive urban devel- opment and use of water-land resources. Alternatively, a low coupling degree denotes a low level of urban devel- opment and water-land resource use.展开更多
This paper focuses on the coupling of water and land resources based on several factors related closely to either water or land resources, which have become a topical subject due to the economic expansion and their su...This paper focuses on the coupling of water and land resources based on several factors related closely to either water or land resources, which have become a topical subject due to the economic expansion and their sustainable development in recent years. A case of Qihe County in Shangdong Province, China has been used to demonstrate the methodology of the coupling and its application in regionalization with the help of geographical information system (GIS) tool. Field observation and measurement of soil salt and moisture in several profiles are used to verify the results of the coupling, which gives reasonable distribution of different areas regarding to the advantages and disadvantages for sustainable agriculture.展开更多
The potential of yield increase in the North China Plain is about 30 billion kg by ameliorating the low yield and medium low yield farmlands and 4 billion kg by reclaiming unused land. Water shortage will be the main ...The potential of yield increase in the North China Plain is about 30 billion kg by ameliorating the low yield and medium low yield farmlands and 4 billion kg by reclaiming unused land. Water shortage will be the main limitation to the further increase of grain crop yield. The amount of water shortage is 8 200 million m3 at present, and will be 17 720 million m3 in 2 000. Yield increase can not be realized by using more water in the future. Other factors such as decrease of the area of cultivated land and the grain crop growing area, deterioration of environment and destruction of resources will also affect the development of grain production. Some suggestions have been proposed in the paper for attaining sustainable increase of yield in the plain.展开更多
The pattern of groundwater usage and industrial development in the Sanjiang Plain remains a concern of Chinese government. In accordance with the Water Conservancy Planning of the Sanjiang Plain, this paper presents a...The pattern of groundwater usage and industrial development in the Sanjiang Plain remains a concern of Chinese government. In accordance with the Water Conservancy Planning of the Sanjiang Plain, this paper presents a Sanjiang Plain resources allocation model which is established to be used in controlling water, land, ecology and economy in consideration of 50%-level and 75%-level years, planting structure adjustment, industry development by 2020, and different transit water exploitation schemes. Lingo10 global optimization has been adopted in solving the model. The results show that by 2020 the output of three industries will increase to a certain degree, the grain yields will satisfy state demand, and regional service value will decrease dramatically. Such results provide theoretical basis and practical significance for instructing the development and exploitation of the Sanjiang Plain.展开更多
North China is the most important food basket of China, where the majority of wheat and corn are produced. Most crops grown in North China are irrigated, thus water security is food security. Since the 1980s, drying h...North China is the most important food basket of China, where the majority of wheat and corn are produced. Most crops grown in North China are irrigated, thus water security is food security. Since the 1980s, drying has been frequently observed, as shown by a reduction in precipitation, cutoff in riverflow, and shrinkage of lakes. This increase in drying cannot be explained by climate change alone. We propose that intensive land-use in this area in recent decades has had a significant impact. The objectives of the study are to develop a quantitative model of the concurrent processes of climate change and land-use in North China, and to estimate the relative contributions of each on the observed drying. We integrated relevant socioeconomic data, land-use data, and climate data in the model, and carried out a detailed multi-temporal (decade, year, day) analysis. Results showed that land-use has greatly changed since 1999. This change is mainly associated with an extremely important 1999 national policy of "returning farmland and grazing land to forest and grassland". We found an interesting interaction between climate change and land use policy on riverflow, runoff, and evapotranspiration. During 1970s and 1980s, climate change explained more than 80%, while the land-use change explained only 10% of the riverflow change. The relative contributions were 45 and 45% in the 1980s-1990s and 35 and 55% in the 1990s-2000s respectively for climate change and land-use change. Since the 1990s land-use change has also contributed more to runoff change than climate change. The opposite trend was found for changes in evapotranspiration. Water availability for agriculture in northern China is simultaneously stressed by extensive changes in land-use and rapid climate change. Adaptation of ecological principles, such as the "returning farmland/grazing land to forest and grassland" policy, and other adjustments of economic developmental strategies can be effective tools to mitigate the water shortage problem in northern China and promote sustainable agricultural and food development.展开更多
Taking an example of Majiayu Catchment Area (14.15 ha) in Taoyuan County of HunanProvince, the soil and water resources dynamics, fertility evolution characteristics andland productivity changing situation were studie...Taking an example of Majiayu Catchment Area (14.15 ha) in Taoyuan County of HunanProvince, the soil and water resources dynamics, fertility evolution characteristics andland productivity changing situation were studied. Fixed observation results from 1993to 2002 showed that pools covering about 15% of total area could store up 10% of surfacerunoff, keep 78.1% of eroded soil and 65.4% of lost nutrients. The yearly ratio ofinterception and evapotranspiration in land, storage in pools and drainage was 7:2:1,which ensured the resources and nutrients equilibrium and a benign recycle in thecatchment area system, and benefited the aquatic culture and helped to resist seasonaldrought. Moreover, the results showed that soil erosion modulus decreased significantly,equal to or lower than soil loss tolerance (≤500 tkm-2) in reddish yellow soil regions.Soil organic matter, total and available N content in sloping land, dryland and paddyfield increased steadily (>10%); water storage enhanced by more than 20% in sloping landand dryland in drought season; crop production increased by more than 20%; and productionof trees, fruits, tea and fish as well as land productivity increased yearly.展开更多
Many river basins in the arid and semi-arid parts of the world are experiencing water scarcity due to water consumption by agriculture resulting in conflicts between upstream and downstream, conflicts between water us...Many river basins in the arid and semi-arid parts of the world are experiencing water scarcity due to water consumption by agriculture resulting in conflicts between upstream and downstream, conflicts between water users, and degradation of the natural ecosystems. The Tarim Basin, Xinjiang, China, has developed into the world’s most important cotton production region with 8.85% of the world’s production. Under the extremely arid climate with annual precipitation of below 100 mm, the water consumption due to irrigation resulted in water scarcity and conflicts between water users as well as between upstream and downstream. The Tarim river catchment harbors about half of the world’s Populus euphratica riparian forests, which are impacted by water shortage. Starting in the 1990s, a unified water management system with a quota system for water distribution has been set up. We introduce this unified water management system and analyze how the water distribution works in practice. Ecologists and forestry officials claim more water for environmental flow, whereas water management officials give priority to agricultural, industrial, and domestic water use. The water quotas for downstream regions are frequently not fulfilled, especially during the non-flood season in spring and early summer posing a risk to water users. Water users with financial and political advantages gain more water security than others. The water quotas are annual quotas. These quotas should be differentiated into seasonal quotas, in order to enhance water security for the downstream section of the Tarim all year round.展开更多
Firstly,current situation and main problems of science and technology development of soil and water conservation were analyzed,and then roles of science and technology in soil and water conservation were studied. At l...Firstly,current situation and main problems of science and technology development of soil and water conservation were analyzed,and then roles of science and technology in soil and water conservation were studied. At last,exploration ways of roles of science and technology in soil and water conservation were proposed.展开更多
In this study,we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human a...In this study,we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human activities on river runoff.The Syr Darya River,which is supplied by snow and glacier meltwater upstream,is an important freshwater source for Central Asia,as nearly half of the population is concentrated in this area.River runoff in this arid region is sensitive to climate change and human activities.Therefore,estimation of the climatic and hydrological changes and the quantification of the impacts of climate change and human activities on river runoff are of great concern and important for regional water resources management.The long-term trends of hydrological time series from the selected 11 hydrological stations in the Syr Darya River Basin were examined by non-parametric methods,including the Pettitt change point test and Mann-Kendall trend tests.It was found that 8 out of 11 hydrological stations showed significant downward trends in river runof f.Change of river runoff variations occurred in the year around 1960.Moreover,during the study period(1930–2015),annual mean temperature,annual precipitation,and annual potential evapotranspiration in the river basin increased substantially.We employed hydrological sensitivity method to evaluate the impacts of climate change and human activities on river runoff based on precipitation and potential evapotranspiration.It was estimated that human activities accounted for over 82.6%–98.7%of the reduction in river runoff,mainly owing to water withdrawal for irrigation purpose.The observed variations in river runoff can subsequently lead to adverse ecological consequences from an ecological and regional water resources management perspective.展开更多
The Wenchuan earthquake in 2008 and geo-hazards triggered by the earthquake caused large injuries and deaths as well as destructive damage for infrastructures like construction, traffic and electricity. It is urgent t...The Wenchuan earthquake in 2008 and geo-hazards triggered by the earthquake caused large injuries and deaths as well as destructive damage for infrastructures like construction, traffic and electricity. It is urgent to select relatively secure areas for townships and cities constructed in high mountainous regions with high magnitude earthquakes. This paper presents the basic thoughts, evaluation indices and evaluation methods of geological security evaluation, water and land resources security demonstration and integrated assessments of geo-environmental suitability for reconstruction in alp and ravine with high magnitude earthquakes, which are applied in the worst-hit areas (12 counties). The integrated assessment shows that: (1) located in the Longmenshan fault zone, the evaluated area is of poor regional crust stability, in which the unstable and second unstable areas account for 79% of the total; (2) the geo-hazards susceptibility is high in the evaluation area. The spots of geo-hazards triggered by earthquake are mainly distributed along the active fault zone with higher distribution in the moderate and high mountains area, in which the areas of high and moderate susceptibility zoning accounts for 40.1% of the total; (3) geological security is poor in the evaluated area, in which the area of the unsuitable construction occupies 73.1%, whereas in the suitable construction area, the areas of geological security, second security and insecurity zoning account for 8.3 %, 9.3% and 9.3 % of the evaluated area respectively; (4) geo-environmentai suitability is poor in the evaluated area, in which the areas of suitability and basic suitability zoning account for 3.5% and 7.3% of the whole evaluation area.展开更多
The"Grain-for-Green"project on the Loess Plateau is the largest revegetation program in the world.However,revegetation-induced land use changes can influence both water and carbon cycles,and the diverse cons...The"Grain-for-Green"project on the Loess Plateau is the largest revegetation program in the world.However,revegetation-induced land use changes can influence both water and carbon cycles,and the diverse consequences were not well understood.Therefore,the reasonability and sustainability of revegetation measures are in question.This study quantifies the impacts of revegetation-induced land use conversions on the water and carbon cycles in a typical watershed on the Loess Plateau and identifies suitable areas where revegetation of forest or grassland could benefit both soil and water conservation and carbon sequestration.We used a coupled hydro-biogeochemical model to simulate the changes of a few key components in terms of water and carbon by designing a variety of hypothetical land use conversion scenarios derived from revegetation policy.Compared to the baseline condition(land use in 2000),both sediment yield and water yield decreased substantially when replacing steep cropland with forest or grassland.Converting cropland with slopes larger than 25°,15°,and 6°to forest(CTF)would enhance the carbon sequestration with a negligible negative effect on soil water content,while replacing cropland with grassland(CTG)would result in a decline in net primary production but with a substantial increase in soil water content(3.8%-14.9%).Compared to the baseline,the soil organic carbon would increase by 0.9%-3.2% in CTF and keep relatively stable in CTG.Through testing a variety of hypothetical revegetation scenarios,we identified potential priority areas for CTF and CTG,where revegetation may be appropriate and potentially beneficial to conserving soil and water and enhancing carbon sequestration.Our study highlights the challenges in future water and carbon coupling management under revegetation policy,and our quantitative results and identification of potential areas for revegetation could provide information to policy makers for seeking optimal management on the Loess Plateau.展开更多
This paper elucidated the necessity and possibility of developing the technology of land treatment on the basis of the analysis of shortage and pollution status of water resources in China.The historical development o...This paper elucidated the necessity and possibility of developing the technology of land treatment on the basis of the analysis of shortage and pollution status of water resources in China.The historical development of this technology in the world was briefly reviewed and the distinction between land treatment and conventional wastewater irrigation was discussed in details. The fundamental characteristics and functions as well as the integrity and compatibility of this ecological engineering were also summarized. It was finally concluded that this technology for wastewater treatment has broad prospects of application in China.展开更多
Our case study analyzed the proximity of previously mapped fractures in the aquifer matrix to 93 Florida panther (Puma concolor coryi) dens mapped from 2007-2016 in south Florida. Dens occurred in five counties (Colli...Our case study analyzed the proximity of previously mapped fractures in the aquifer matrix to 93 Florida panther (Puma concolor coryi) dens mapped from 2007-2016 in south Florida. Dens occurred in five counties (Collier = 77, Dade = 1, Hendry = 9, Lee = 5, and Monroe = 1) and three sub-basins of the Greater Everglades Basin (Big Cypress Swamp = 83, Caloosahatchee = 3, and Everglades = 7). Fractured aquifers occur worldwide, but are not the focus of habitat suitability studies, despite evidence that fractures influence plant species composition and density. Habitat alterations can occur many kilometers from the surface footprint of groundwater alterations in the regional Floridan aquifer system via preferential flow through fractures. Increased natural discharge from and recharge to the aquifer occur at fracture intersections. Greater induced recharge and habitat changes also may occur at fracture intersections. All dens were within 5 km of a previously mapped fracture;36% and 74% were within 1 km and 2 km, respectively, of those fractures;and 47%, 74%, and 90% of dens were within 2 km, 3.25 km and 5 km, respectively, from the nearest fracture intersection. Results suggest fractures influence the suitability and/or availability of habitat for panther dens, selection of den sites, and availability as well as abundance of high quality prey items essential for the nutritional demands of successfully rearing panther kittens in the wild. We recommend more detailed investigations of: a) vegetation characteristics near dens, b) groundwater alterations and cumulative impacts of those alterations associated with fractures in panther habitat (e.g., altered plant species composition and density), and c) influence of aquifer fractures in all habitats underlain by fractures.展开更多
基金Under the auspices of the National Natural Science Foundation of China(No.42271279,41931293,41801175)。
文摘Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as a case study and employing the Criteria Importance Through Intercriteria Correlation(CRITIC)method,a modified model of coupling degree was developed to evaluate the car-rying capacity of water and land resources systems endowment and utilization,as well as their coupling coordination degree from 2013 to 2020.Our findings indicate that the water and land resources of Yulin are diminishing due to declines in agriculture,higher industrial water use,and wetland shrinkage.However,reallocating domestic water for ecological sustainability and reducing sloping farmland can mitigate this trend of decline.Temporally,as the coupling coordination between water and land resources system endowment in Yulin continuously improved,the coupling coordination between water and land resources system utilization first decreased and then in-creased with 2016 as the turning point.Spatially,the carrying capacity of water and land resources systems,the coupling coordination degree between water and land resources system endowment,and the coupling coordination degree between water and land resources system utilization in Yulin exhibited the same pattern of being higher in the six northern counties than in the six southern counties.Improving the water resources endowment is vital for the highly efficient use of water and land resources.
基金jointly supported by the National Natural Science Foundation of China(41702280)the projects of the China Geology Survey(DD20221754 and DD20190333)。
文摘Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Province is confronted with the problem of insufficient water resources reserve.Based on the Coupled Ground-Water and Surface-Water Flow Model(GSFLOW),this paper evaluates the response of water resources in the basin to changes in land use patterns,optimizes the land use pattern,improves the ecological and economic benefits,and the efficiency of various spatial development,providing a reference for ecological protection and high-quality development of the Yellow River Basin.The research shows that the land use pattern in the Guanzhong Basin should be further optimized.Under the condition of considering ecological and economic development,the percentage change of the optimum area of farmland,forest,grassland,water area,and urban area compared with the current land use area ratio is+2.3,+2.4,-6.1,+0.2,and+1.6,respectively.The economic and ecological value of land increases by14.1%and 3.1%,respectively,and the number of water resources can increase by 2.5%.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Pan-Third Pole Environment Study for a Green Silk Road (XDA20060303)the Xinjiang Key Research and Development Program (2016B02017-4)+1 种基金the National Nature Science Foundation of China-United Nations Environment Programme (NSFC-UNEP, 41361140361)the ''High-level Talents Project'' (Y871171) of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences
文摘The countries of Central Asia are collectively known as the five "-stans": Uzbekistan, Kyrgyzstan, Turkmenistan, Tajikistan and Kazakhstan. In recent times, the Central Asian region has been affected by the shrinkage of the Aral Sea, widespread desertification, soil salinization, biodiversity loss, frequent sand storms, and many other ecological disasters. This paper is a review article based upon the collection, identification and collation of previous studies of environmental changes and regional developments in Central Asia in the past 30 years. Most recent studies have reached a consensus that the temperature rise in Central Asia is occurring faster than the global average. This warming trend will not only result in a higher evaporation in the basin oases, but also to a significant retreat of glaciers in the mountainous areas. Water is the key to sustainable development in the arid and semi-arid regions in Central Asia. The uneven distribution, over consumption, and pollution of water resources in Central Asia have caused severe water supply problems, which have been affecting regional harmony and development for the past 30 years. The widespread and significant land use changes in the 1990 s could be used to improve our understanding of natural variability and human interaction in the region. There has been a positive trend of trans-border cooperation among the Central Asian countries in recent years. International attention has grown and research projects have been initiated to provide water and ecosystem protection in Central Asia. However, the agreements that have been reached might not be able to deliver practical action in time to prevent severe ecological disasters. Water management should be based on hydrographic borders and ministries should be able to make timely decisions without political intervention. Fully integrated management of water resources, land use and industrial development is essential in Central Asia. The ecological crisis should provide sufficient motivation to reach a consensus on unified water management throughout the region.
文摘In this paper, the problems of rational use, protection and management of water and irrigated land resources of Uzbekistan are discussed. Uzbekistan is using more than 50% water resources of the region and therefore it’s more vulnerable to the problems of water deficiency and pollution caused by mismanagement, use of outdated technologies, and climate change impact. Utilization of water resources on main branches of economy (irrigation, industry and drinking water supply) from 2000-2009 and in some cases beyond this period was analyzed. Based on the data analyzed, the conditions of irrigated land degradation in Uzbekistan are estimated. The results of this analysis suggest several possibilities toward a sustainable use of irrigated lands: i) reduction of the groundwater table depth;ii) decrease of the level of mineralization of groundwater, and iii) improvement of ameliorative conditions of irrigated lands. The causes resulting in degradation of the irrigated lands and practical measures on the reduction of salinization of the irrigated lands are also recommended.
文摘Hexi region is located in the northwest arid zone in China,being both the base of industry and agriculture,and the prop of developing northwestern China on a large scale in the next century.On the basis of the study on exploitation and utilization process of water and land resources in past 40 years,and present productivity,this paper approaches the utilization trend and development potential of water and land resources;analyses the characteristics,problems and directions of resource utilization in the future;and proposes the countermeasures of rational development of water and land resources.
文摘After the analysis of food security of Shandong Province since 1990s, based on the change of grain output and per unit grain yield, it was considered that food production of Shandong Province was generally stable; through comparing the proportion of per capita possession of grains and per unit grain yield of Shandong Province in the whole country, it revealed that they were higher than the national average level. On this basis, the relationship between land-water resources and food security had been analyzed, and it summarized that Shandong water resources were insufficient, agricultural water was not enough and water had been seriously polluted; and that cultivated area was large and the overall quality was high. Meanwhile, it had analyzed the spatial pattern of land-water resources and the loss of water and soil. Finally, suggestions for the sustainable use of land-water resources in Shandong Province based on food security had been proposed. It should enhance the construction of basic agricultural facilities and implement united dispatching of multiple water resources; strengthen the supervision of cultivated land resources and comprehensively develop reserve resources of cultivated lands; and intensify the treatment of land-water resources and prevention of the loss of water and soil in key areas.
基金supported by the Dr.Western-funded Projects of Chinese Academy of Sciences(XBBS200805)the National Natural Science Foundation of China(40901092)
文摘Urban development in arid and semi-arid regions is largely constrained by fragile physical environ- ments. The characteristics of an urban settlement are different from those in other regions of China. This paper analyses the coupling characteristics and spatio-temporal variations for oasis urban development and water-land resources at the northern slopes of the Tianshan Mountains by principal component analysis and a coupling degree model. The result shows that the degree and change in regional use of water and land resources are different among the studied cities/counties during their development. The built-up areas of these cities/counties have changed little with increasing populations and urbanization levels, which well reflects that the urban development in arid and semi-arid regions is limited by oasis areas. Per capita amount of water supplied, however, presented a trend of slowed growth with increasing levels of urbanization. Water consumption gradually increased with urban development and the improvement of people's living standards, accompanied by enhanced water use efficiency. The level of urbanization can be assessed through the coupling degree between oasis urban development and the use of water and land resources. A high coupling degree represents a high level of comprehensive urban devel- opment and use of water-land resources. Alternatively, a low coupling degree denotes a low level of urban devel- opment and water-land resource use.
文摘This paper focuses on the coupling of water and land resources based on several factors related closely to either water or land resources, which have become a topical subject due to the economic expansion and their sustainable development in recent years. A case of Qihe County in Shangdong Province, China has been used to demonstrate the methodology of the coupling and its application in regionalization with the help of geographical information system (GIS) tool. Field observation and measurement of soil salt and moisture in several profiles are used to verify the results of the coupling, which gives reasonable distribution of different areas regarding to the advantages and disadvantages for sustainable agriculture.
文摘The potential of yield increase in the North China Plain is about 30 billion kg by ameliorating the low yield and medium low yield farmlands and 4 billion kg by reclaiming unused land. Water shortage will be the main limitation to the further increase of grain crop yield. The amount of water shortage is 8 200 million m3 at present, and will be 17 720 million m3 in 2 000. Yield increase can not be realized by using more water in the future. Other factors such as decrease of the area of cultivated land and the grain crop growing area, deterioration of environment and destruction of resources will also affect the development of grain production. Some suggestions have been proposed in the paper for attaining sustainable increase of yield in the plain.
基金supported by Ministry of Water resources Public Industry Research Special Funds for Projects (No.201101022)Supported by the Fundamental Research Funds for the Central Universities (No.2011B02014)
文摘The pattern of groundwater usage and industrial development in the Sanjiang Plain remains a concern of Chinese government. In accordance with the Water Conservancy Planning of the Sanjiang Plain, this paper presents a Sanjiang Plain resources allocation model which is established to be used in controlling water, land, ecology and economy in consideration of 50%-level and 75%-level years, planting structure adjustment, industry development by 2020, and different transit water exploitation schemes. Lingo10 global optimization has been adopted in solving the model. The results show that by 2020 the output of three industries will increase to a certain degree, the grain yields will satisfy state demand, and regional service value will decrease dramatically. Such results provide theoretical basis and practical significance for instructing the development and exploitation of the Sanjiang Plain.
基金the financial support from the National Natural Science Foundation of China (91025008 and 30972421)
文摘North China is the most important food basket of China, where the majority of wheat and corn are produced. Most crops grown in North China are irrigated, thus water security is food security. Since the 1980s, drying has been frequently observed, as shown by a reduction in precipitation, cutoff in riverflow, and shrinkage of lakes. This increase in drying cannot be explained by climate change alone. We propose that intensive land-use in this area in recent decades has had a significant impact. The objectives of the study are to develop a quantitative model of the concurrent processes of climate change and land-use in North China, and to estimate the relative contributions of each on the observed drying. We integrated relevant socioeconomic data, land-use data, and climate data in the model, and carried out a detailed multi-temporal (decade, year, day) analysis. Results showed that land-use has greatly changed since 1999. This change is mainly associated with an extremely important 1999 national policy of "returning farmland and grazing land to forest and grassland". We found an interesting interaction between climate change and land use policy on riverflow, runoff, and evapotranspiration. During 1970s and 1980s, climate change explained more than 80%, while the land-use change explained only 10% of the riverflow change. The relative contributions were 45 and 45% in the 1980s-1990s and 35 and 55% in the 1990s-2000s respectively for climate change and land-use change. Since the 1990s land-use change has also contributed more to runoff change than climate change. The opposite trend was found for changes in evapotranspiration. Water availability for agriculture in northern China is simultaneously stressed by extensive changes in land-use and rapid climate change. Adaptation of ecological principles, such as the "returning farmland/grazing land to forest and grassland" policy, and other adjustments of economic developmental strategies can be effective tools to mitigate the water shortage problem in northern China and promote sustainable agricultural and food development.
基金funded by the Knowledge Innovation Program of Chinese Academy of Sciences(KZCX2-SW-415,KZCX3-SW-426).
文摘Taking an example of Majiayu Catchment Area (14.15 ha) in Taoyuan County of HunanProvince, the soil and water resources dynamics, fertility evolution characteristics andland productivity changing situation were studied. Fixed observation results from 1993to 2002 showed that pools covering about 15% of total area could store up 10% of surfacerunoff, keep 78.1% of eroded soil and 65.4% of lost nutrients. The yearly ratio ofinterception and evapotranspiration in land, storage in pools and drainage was 7:2:1,which ensured the resources and nutrients equilibrium and a benign recycle in thecatchment area system, and benefited the aquatic culture and helped to resist seasonaldrought. Moreover, the results showed that soil erosion modulus decreased significantly,equal to or lower than soil loss tolerance (≤500 tkm-2) in reddish yellow soil regions.Soil organic matter, total and available N content in sloping land, dryland and paddyfield increased steadily (>10%); water storage enhanced by more than 20% in sloping landand dryland in drought season; crop production increased by more than 20%; and productionof trees, fruits, tea and fish as well as land productivity increased yearly.
文摘Many river basins in the arid and semi-arid parts of the world are experiencing water scarcity due to water consumption by agriculture resulting in conflicts between upstream and downstream, conflicts between water users, and degradation of the natural ecosystems. The Tarim Basin, Xinjiang, China, has developed into the world’s most important cotton production region with 8.85% of the world’s production. Under the extremely arid climate with annual precipitation of below 100 mm, the water consumption due to irrigation resulted in water scarcity and conflicts between water users as well as between upstream and downstream. The Tarim river catchment harbors about half of the world’s Populus euphratica riparian forests, which are impacted by water shortage. Starting in the 1990s, a unified water management system with a quota system for water distribution has been set up. We introduce this unified water management system and analyze how the water distribution works in practice. Ecologists and forestry officials claim more water for environmental flow, whereas water management officials give priority to agricultural, industrial, and domestic water use. The water quotas for downstream regions are frequently not fulfilled, especially during the non-flood season in spring and early summer posing a risk to water users. Water users with financial and political advantages gain more water security than others. The water quotas are annual quotas. These quotas should be differentiated into seasonal quotas, in order to enhance water security for the downstream section of the Tarim all year round.
文摘Firstly,current situation and main problems of science and technology development of soil and water conservation were analyzed,and then roles of science and technology in soil and water conservation were studied. At last,exploration ways of roles of science and technology in soil and water conservation were proposed.
基金This research was funded by the National Natural Science Foundation of China(U1603242)the Science and Technology Service Network Initiative(STS)Project in the Chinese Academy of Sciences(KFJ-STS-QYZD-071)+1 种基金the Training Program for Youth Innovative Talents in Science and Technology in Xinjiang Uygur Autonomous Regions(QN2016BS0052)the CAS"Light of West China"Program(2017-XBQNXZ-B-012).
文摘In this study,we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human activities on river runoff.The Syr Darya River,which is supplied by snow and glacier meltwater upstream,is an important freshwater source for Central Asia,as nearly half of the population is concentrated in this area.River runoff in this arid region is sensitive to climate change and human activities.Therefore,estimation of the climatic and hydrological changes and the quantification of the impacts of climate change and human activities on river runoff are of great concern and important for regional water resources management.The long-term trends of hydrological time series from the selected 11 hydrological stations in the Syr Darya River Basin were examined by non-parametric methods,including the Pettitt change point test and Mann-Kendall trend tests.It was found that 8 out of 11 hydrological stations showed significant downward trends in river runof f.Change of river runoff variations occurred in the year around 1960.Moreover,during the study period(1930–2015),annual mean temperature,annual precipitation,and annual potential evapotranspiration in the river basin increased substantially.We employed hydrological sensitivity method to evaluate the impacts of climate change and human activities on river runoff based on precipitation and potential evapotranspiration.It was estimated that human activities accounted for over 82.6%–98.7%of the reduction in river runoff,mainly owing to water withdrawal for irrigation purpose.The observed variations in river runoff can subsequently lead to adverse ecological consequences from an ecological and regional water resources management perspective.
文摘The Wenchuan earthquake in 2008 and geo-hazards triggered by the earthquake caused large injuries and deaths as well as destructive damage for infrastructures like construction, traffic and electricity. It is urgent to select relatively secure areas for townships and cities constructed in high mountainous regions with high magnitude earthquakes. This paper presents the basic thoughts, evaluation indices and evaluation methods of geological security evaluation, water and land resources security demonstration and integrated assessments of geo-environmental suitability for reconstruction in alp and ravine with high magnitude earthquakes, which are applied in the worst-hit areas (12 counties). The integrated assessment shows that: (1) located in the Longmenshan fault zone, the evaluated area is of poor regional crust stability, in which the unstable and second unstable areas account for 79% of the total; (2) the geo-hazards susceptibility is high in the evaluation area. The spots of geo-hazards triggered by earthquake are mainly distributed along the active fault zone with higher distribution in the moderate and high mountains area, in which the areas of high and moderate susceptibility zoning accounts for 40.1% of the total; (3) geological security is poor in the evaluated area, in which the area of the unsuitable construction occupies 73.1%, whereas in the suitable construction area, the areas of geological security, second security and insecurity zoning account for 8.3 %, 9.3% and 9.3 % of the evaluated area respectively; (4) geo-environmentai suitability is poor in the evaluated area, in which the areas of suitability and basic suitability zoning account for 3.5% and 7.3% of the whole evaluation area.
基金funded by the National Natural Science Foundation of China(31961143011)the China Postdoctoral Science Foundation(2020M683451)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB40020205)the Shaanxi Key Research and Development Program of China(2018ZDXM-GY030)the National Thousand Youth Talent Program of China。
文摘The"Grain-for-Green"project on the Loess Plateau is the largest revegetation program in the world.However,revegetation-induced land use changes can influence both water and carbon cycles,and the diverse consequences were not well understood.Therefore,the reasonability and sustainability of revegetation measures are in question.This study quantifies the impacts of revegetation-induced land use conversions on the water and carbon cycles in a typical watershed on the Loess Plateau and identifies suitable areas where revegetation of forest or grassland could benefit both soil and water conservation and carbon sequestration.We used a coupled hydro-biogeochemical model to simulate the changes of a few key components in terms of water and carbon by designing a variety of hypothetical land use conversion scenarios derived from revegetation policy.Compared to the baseline condition(land use in 2000),both sediment yield and water yield decreased substantially when replacing steep cropland with forest or grassland.Converting cropland with slopes larger than 25°,15°,and 6°to forest(CTF)would enhance the carbon sequestration with a negligible negative effect on soil water content,while replacing cropland with grassland(CTG)would result in a decline in net primary production but with a substantial increase in soil water content(3.8%-14.9%).Compared to the baseline,the soil organic carbon would increase by 0.9%-3.2% in CTF and keep relatively stable in CTG.Through testing a variety of hypothetical revegetation scenarios,we identified potential priority areas for CTF and CTG,where revegetation may be appropriate and potentially beneficial to conserving soil and water and enhancing carbon sequestration.Our study highlights the challenges in future water and carbon coupling management under revegetation policy,and our quantitative results and identification of potential areas for revegetation could provide information to policy makers for seeking optimal management on the Loess Plateau.
文摘This paper elucidated the necessity and possibility of developing the technology of land treatment on the basis of the analysis of shortage and pollution status of water resources in China.The historical development of this technology in the world was briefly reviewed and the distinction between land treatment and conventional wastewater irrigation was discussed in details. The fundamental characteristics and functions as well as the integrity and compatibility of this ecological engineering were also summarized. It was finally concluded that this technology for wastewater treatment has broad prospects of application in China.
文摘Our case study analyzed the proximity of previously mapped fractures in the aquifer matrix to 93 Florida panther (Puma concolor coryi) dens mapped from 2007-2016 in south Florida. Dens occurred in five counties (Collier = 77, Dade = 1, Hendry = 9, Lee = 5, and Monroe = 1) and three sub-basins of the Greater Everglades Basin (Big Cypress Swamp = 83, Caloosahatchee = 3, and Everglades = 7). Fractured aquifers occur worldwide, but are not the focus of habitat suitability studies, despite evidence that fractures influence plant species composition and density. Habitat alterations can occur many kilometers from the surface footprint of groundwater alterations in the regional Floridan aquifer system via preferential flow through fractures. Increased natural discharge from and recharge to the aquifer occur at fracture intersections. Greater induced recharge and habitat changes also may occur at fracture intersections. All dens were within 5 km of a previously mapped fracture;36% and 74% were within 1 km and 2 km, respectively, of those fractures;and 47%, 74%, and 90% of dens were within 2 km, 3.25 km and 5 km, respectively, from the nearest fracture intersection. Results suggest fractures influence the suitability and/or availability of habitat for panther dens, selection of den sites, and availability as well as abundance of high quality prey items essential for the nutritional demands of successfully rearing panther kittens in the wild. We recommend more detailed investigations of: a) vegetation characteristics near dens, b) groundwater alterations and cumulative impacts of those alterations associated with fractures in panther habitat (e.g., altered plant species composition and density), and c) influence of aquifer fractures in all habitats underlain by fractures.