Ultrasonic guided wave have the multi-modes and dispersive characteristics, and its modes are easy to be converted at boundary or when running into defects in pipes, which makes the discrimination of different guided ...Ultrasonic guided wave have the multi-modes and dispersive characteristics, and its modes are easy to be converted at boundary or when running into defects in pipes, which makes the discrimination of different guided waves modes of the reflection signals in pipes NDT very hard. In this work, firstly, the experiments are carried out to test two kinds of stainless steel pipes by applying guided waves NDT, one is integrated pipe and another is non-integrated pipe with a small hole defect, and the detected guided waves echo signals are respectively obtained. Secondly, the measured signals are processed by matching pursuit method and the Chirplet matching atom parameters are calculated. By calculating the time-frequency distributions spectrum of detected guided waves echo signals, torsional, flexural and longitudinal guided waves modes are identified from the intact pipe, and the two wave-packets with torsional and flexural guided waves modes are also identified from the pipe with hole defect. The results showed that the matching pursuit method has a tremendous advantage to identify different guided waves modes in pipes nondestructive testing.展开更多
Mismatching quality factors(Q-factors)is one of the main factors causing zero-rate output(ZRO)in degenerate(DE)Micro-Electro-Mechanical Systems(MEMS)vibratory gyroscopes.To eliminate the ZRO of the DE MEMS gyroscope,t...Mismatching quality factors(Q-factors)is one of the main factors causing zero-rate output(ZRO)in degenerate(DE)Micro-Electro-Mechanical Systems(MEMS)vibratory gyroscopes.To eliminate the ZRO of the DE MEMS gyroscope,this study introduces a method for real-time identification and automatic matching of Q-factors in rate mode.By leveraging the vibration characteristics of the DE MEMS vibratory gyroscope in rate mode,dedicated online test methods are designed to determine the Q-factors for both the drive and sense modes,enabling online identification of the Q-factor mismatching.Furthermore,an automatic Q-factor matching system is designed utilizing the mechanical-thermal dissipation mechanism of the resistive damper.The effectiveness of this proposed method is validated through simulations and experiments conducted on a MEMS disk resonator gyroscope(DRG).The results show a measurement error within 4%for Q-factor identification,and automatic Q-factor matching effectively reduces the ZRO by 77%.Employing this automatic Q-factor matching method successfully reduces the ZRO that is caused by the mismatching of Q-factors in the MEMS DRG from 0.11°/s to 0.025°/s and improves the bias instability(BI)from 0.40°/s to 0.19°/s.展开更多
Mode matching is used for the analysis of monopole antenna on circular disc, which is achieved by developing a novel model consisting of two artificial ground planes above and bellow the monopole antenna. Using this m...Mode matching is used for the analysis of monopole antenna on circular disc, which is achieved by developing a novel model consisting of two artificial ground planes above and bellow the monopole antenna. Using this model, the input impedance is computed and compared with measured data reported in literatures, and excellent agreement is observed.展开更多
In H.264 encoder, all possible coding modes should be checked to choose the most appropriate mode for every macroblock, which adds a heavy computation burden to the encoder. In this paper, a fast inter-mode decision m...In H.264 encoder, all possible coding modes should be checked to choose the most appropriate mode for every macroblock, which adds a heavy computation burden to the encoder. In this paper, a fast inter-mode decision method is presented to reduce computation complexity of an H.264 encoder. By detecting the best matching block (BMB) before transform and quantization, some coding modes can be skipped and the corresponding encoding steps can be omitted for these BMBs. Meanwhile this method can also be used to detect all-zero blocks. The experimental results show that this method achieves consistently significant reduction of encoding time while keeping almost the same rate-distortion performance.展开更多
Vibration mode based model reduction methods like Component Mode Synthesis (CMS) will be compared to methods coming from control engineering, namely moment matching (MM) and balanced truncation (BT). Conclusions based...Vibration mode based model reduction methods like Component Mode Synthesis (CMS) will be compared to methods coming from control engineering, namely moment matching (MM) and balanced truncation (BT). Conclusions based on the theory together with a numerical demonstration will be presented. The key issues on which the paper is focused are the reduction of metallic structures, the sensitivity of the reduced model to varying boundary conditions, full system response, accurate statics and the possibility to determine “a priori” the number of needed modes (trial vectors). These are important topics for the use of reduction methods in general and in particular for the implementation of FE models in multi body system dynamics where model reduction is widely used. The intention of this paper is to give insight into the methods nature and to clarify the strengths and limitations of the three methods. It turns out, that in the considered framework CMS delivers the best results together with a clear strategy for an “a priori” selection of the modes (trial vectors).展开更多
The near crack line field analysis method has been used to investigate into the exact elastic-plastic solutions of a mode Ⅱ crack under plane stress condition in anelastic-perfectly plastic solid. The assumptions of ...The near crack line field analysis method has been used to investigate into the exact elastic-plastic solutions of a mode Ⅱ crack under plane stress condition in anelastic-perfectly plastic solid. The assumptions of the usual small scale yielding theoryhave been completely. dbandoned and the correct .formulations of matching conditionsat the elastic-plastic boundary have been given. By matching the general solution of the plastic stress field (but not the special solution used to be adopted) will the exactelastic stress field (but not the crack tip K-dominant field) at the elastic-plasticboundary. near the crack line, the plastic .stresses, the length of the plastic zone and theunit normal vector of the elaslic-plastic boundary. which sufficiently precise nearthe crack line region, hare been given.展开更多
The near crack line field analysis method has been used io investigate into theexact elastic-plastic solutions of a mode II crack under plane stress condilion in anelastic-perfectly plastic solid. The assumptions of t...The near crack line field analysis method has been used io investigate into theexact elastic-plastic solutions of a mode II crack under plane stress condilion in anelastic-perfectly plastic solid. The assumptions of the usual small scale yielding theory.hare been completely. dbandoned and the correct formulations of matching conditionsat the elaslic-plastic boundary. have been given. By, matching the general solution ofthe plastic slress field (bul not the special solution used to be adopted) with the exactelastic stress field (but not the crack tip K-dominant field) at the elastic-plasticboundary, near the crack line, the plastic stresses. the length of the plastic =one and theunit normal vector of the elastic-plastic boundary.which are sufficiently precise near the crack line region ,have been given.展开更多
The E-plane waveguide branch directional couplers are analyzed by a method which combines the multimode network theory with rigorous mode-matching approach. The electromagnetic field components are expanded by the sup...The E-plane waveguide branch directional couplers are analyzed by a method which combines the multimode network theory with rigorous mode-matching approach. The electromagnetic field components are expanded by the superposition of LSEx modes rather than TE and TM modes in the mode-matching procedure. Meanwhile, the electromagnetic problem is transferred into the network problem through the mode-matching treatment. It is shown that the present method has the advantages of simplicity and less computation without affecting the accuracy of the calculation.展开更多
文摘Ultrasonic guided wave have the multi-modes and dispersive characteristics, and its modes are easy to be converted at boundary or when running into defects in pipes, which makes the discrimination of different guided waves modes of the reflection signals in pipes NDT very hard. In this work, firstly, the experiments are carried out to test two kinds of stainless steel pipes by applying guided waves NDT, one is integrated pipe and another is non-integrated pipe with a small hole defect, and the detected guided waves echo signals are respectively obtained. Secondly, the measured signals are processed by matching pursuit method and the Chirplet matching atom parameters are calculated. By calculating the time-frequency distributions spectrum of detected guided waves echo signals, torsional, flexural and longitudinal guided waves modes are identified from the intact pipe, and the two wave-packets with torsional and flexural guided waves modes are also identified from the pipe with hole defect. The results showed that the matching pursuit method has a tremendous advantage to identify different guided waves modes in pipes nondestructive testing.
基金supported in part by the National Natural Science Foundation of China under Grants 61971466 and 62001223in part by the Equipment Pre-Research Foundation of China under Grant 80917020506.
文摘Mismatching quality factors(Q-factors)is one of the main factors causing zero-rate output(ZRO)in degenerate(DE)Micro-Electro-Mechanical Systems(MEMS)vibratory gyroscopes.To eliminate the ZRO of the DE MEMS gyroscope,this study introduces a method for real-time identification and automatic matching of Q-factors in rate mode.By leveraging the vibration characteristics of the DE MEMS vibratory gyroscope in rate mode,dedicated online test methods are designed to determine the Q-factors for both the drive and sense modes,enabling online identification of the Q-factor mismatching.Furthermore,an automatic Q-factor matching system is designed utilizing the mechanical-thermal dissipation mechanism of the resistive damper.The effectiveness of this proposed method is validated through simulations and experiments conducted on a MEMS disk resonator gyroscope(DRG).The results show a measurement error within 4%for Q-factor identification,and automatic Q-factor matching effectively reduces the ZRO by 77%.Employing this automatic Q-factor matching method successfully reduces the ZRO that is caused by the mismatching of Q-factors in the MEMS DRG from 0.11°/s to 0.025°/s and improves the bias instability(BI)from 0.40°/s to 0.19°/s.
文摘Mode matching is used for the analysis of monopole antenna on circular disc, which is achieved by developing a novel model consisting of two artificial ground planes above and bellow the monopole antenna. Using this model, the input impedance is computed and compared with measured data reported in literatures, and excellent agreement is observed.
基金Project supported by the National High-Technology Research and Development Program of China (Grant No.2002AA1Z1190)
文摘In H.264 encoder, all possible coding modes should be checked to choose the most appropriate mode for every macroblock, which adds a heavy computation burden to the encoder. In this paper, a fast inter-mode decision method is presented to reduce computation complexity of an H.264 encoder. By detecting the best matching block (BMB) before transform and quantization, some coding modes can be skipped and the corresponding encoding steps can be omitted for these BMBs. Meanwhile this method can also be used to detect all-zero blocks. The experimental results show that this method achieves consistently significant reduction of encoding time while keeping almost the same rate-distortion performance.
文摘Vibration mode based model reduction methods like Component Mode Synthesis (CMS) will be compared to methods coming from control engineering, namely moment matching (MM) and balanced truncation (BT). Conclusions based on the theory together with a numerical demonstration will be presented. The key issues on which the paper is focused are the reduction of metallic structures, the sensitivity of the reduced model to varying boundary conditions, full system response, accurate statics and the possibility to determine “a priori” the number of needed modes (trial vectors). These are important topics for the use of reduction methods in general and in particular for the implementation of FE models in multi body system dynamics where model reduction is widely used. The intention of this paper is to give insight into the methods nature and to clarify the strengths and limitations of the three methods. It turns out, that in the considered framework CMS delivers the best results together with a clear strategy for an “a priori” selection of the modes (trial vectors).
文摘The near crack line field analysis method has been used to investigate into the exact elastic-plastic solutions of a mode Ⅱ crack under plane stress condition in anelastic-perfectly plastic solid. The assumptions of the usual small scale yielding theoryhave been completely. dbandoned and the correct .formulations of matching conditionsat the elastic-plastic boundary have been given. By matching the general solution of the plastic stress field (but not the special solution used to be adopted) will the exactelastic stress field (but not the crack tip K-dominant field) at the elastic-plasticboundary. near the crack line, the plastic .stresses, the length of the plastic zone and theunit normal vector of the elaslic-plastic boundary. which sufficiently precise nearthe crack line region, hare been given.
文摘The near crack line field analysis method has been used io investigate into theexact elastic-plastic solutions of a mode II crack under plane stress condilion in anelastic-perfectly plastic solid. The assumptions of the usual small scale yielding theory.hare been completely. dbandoned and the correct formulations of matching conditionsat the elaslic-plastic boundary. have been given. By, matching the general solution ofthe plastic slress field (bul not the special solution used to be adopted) with the exactelastic stress field (but not the crack tip K-dominant field) at the elastic-plasticboundary, near the crack line, the plastic stresses. the length of the plastic =one and theunit normal vector of the elastic-plastic boundary.which are sufficiently precise near the crack line region ,have been given.
文摘The E-plane waveguide branch directional couplers are analyzed by a method which combines the multimode network theory with rigorous mode-matching approach. The electromagnetic field components are expanded by the superposition of LSEx modes rather than TE and TM modes in the mode-matching procedure. Meanwhile, the electromagnetic problem is transferred into the network problem through the mode-matching treatment. It is shown that the present method has the advantages of simplicity and less computation without affecting the accuracy of the calculation.