AlGaN/GaN high electron mobility transistors (HEMTs) grown on Fe-modulation-doped (MD) and unintentionally doped (UID) GaN buffer layers are investigated and compared. Highly resistive GaN buffers (10^9Ω·...AlGaN/GaN high electron mobility transistors (HEMTs) grown on Fe-modulation-doped (MD) and unintentionally doped (UID) GaN buffer layers are investigated and compared. Highly resistive GaN buffers (10^9Ω·cm) are induced by individual mechanisms for the electron traps' formation: the Fe MD buffer (sample A) and the UID buffer with high density of edge-type dislocations (7.24×10^9cm^-2, sample B). The 300K Hall test indicates that the mobility of sample A with Fe doping (2503cm^2V^-1s^-1) is much higher than sample B (1926cm^2V^-1s^-1) due to the decreased scattering effect on the two-dimensional electron gas. HEMT devices are fabricated on the two samples and pulsed I–V measurements are conducted. Device A shows better gate pinch-off characteristics and a higher threshold voltage (-2.63V) compared with device B (-3.71V). Lower gate leakage current |IGS| of device A (3.32×10^-7A) is present compared with that of device B (8.29×10^-7A). When the off-state quiescent points Q_2 (V GQ2=-8V, V DQ2=0V) are on, V th hardly shifts for device A while device B shows +0.21V positive threshold voltage shift, resulting from the existence of electron traps associated with the dislocations in the UID-GaN buffer layer under the gate. Under pulsed I–V and transconductance G m–V GS measurement, the device with the Fe MD-doped buffer shows more potential in improving reliability upon off-state stress.展开更多
It has been well recognized that, due to anisotropic packing structure of granular material, the true stress in a specimen is different from the applied stress. However, very few research efforts have been focused on ...It has been well recognized that, due to anisotropic packing structure of granular material, the true stress in a specimen is different from the applied stress. However, very few research efforts have been focused on quantifying the relationship between the true stress and applied stress. In this paper, we derive an explicit relationship among applied stress tensor, material-fabric tensor, and force-fabric tensor; and we propose a relationship between the true stress tensor and the applied stress tensor. The validity of this derived relationship is examined by using the discrete element simulation results for granular material under biaxial and triaxial loading con- ditions.展开更多
Minimizing disorder and defects is crucial for realizing the full potential of two-dimensional transition metal dichalcogenides(TMDs) materials and improving device performance to desired properties. However, the meth...Minimizing disorder and defects is crucial for realizing the full potential of two-dimensional transition metal dichalcogenides(TMDs) materials and improving device performance to desired properties. However, the methods in defect controlcurrently face challenges with overly large operational areas and a lack of precision in targeting specific defects. Therefore,we propose a new method for the precise and universal defect healing of TMD materials, integrating real-time imaging withscanning transmission electron microscopy (STEM). This method employs electron beam irradiation to stimulate the diffusionmigration of surface-adsorbed adatoms on TMD materials grown by low-temperature molecular beam epitaxy (MBE),and heal defects within the diffusion range. This approach covers defect repairs ranging from zero-dimensional vacancydefects to two-dimensional grain orientation alignment, demonstrating its universality in terms of the types of samples anddefects. These findings offer insights into the use of atomic-level focused electron beams at appropriate voltages in STEMfor defect healing, providing valuable experience for achieving atomic-level precise fabrication of TMD materials.展开更多
A method based on Fourier spectrum analysis for predicting the performances of the X-ray compound lenses is briefly introduced, the theoretical result obtained is the same as that of Fresnel-Kirchhoff approach. A kind...A method based on Fourier spectrum analysis for predicting the performances of the X-ray compound lenses is briefly introduced, the theoretical result obtained is the same as that of Fresnel-Kirchhoff approach. A kind of technique named moulding is developed for fabricating the one-dimensional (1D) compound X-ray lens with Al material and the fabrication process is presented. In addition, a two-time coating method is used to improve the numerical apertures of the compound lenses. Furthermore, the focusing performance of the Al compound X-ray lens under the high energy X-rays is measured.展开更多
The availability of high‐strength fabrics and progress in the development of large‐scale inflatable technology made possible the creation of temporary and quickly deployable structures for protection of underground ...The availability of high‐strength fabrics and progress in the development of large‐scale inflatable technology made possible the creation of temporary and quickly deployable structures for protection of underground infrastructure.Inflatable structures are relatively lightweight and portable,and can maintain the required rigidity while in operation.These benefits have prompted the development of inflatable structures for use in confined spaces,such as tunnels and large‐diameter pipes to act as barriers for containing flooding with minimal infrastructure modification.This work presents experimental results obtained from the evaluation of frictional characteristics of the fabric material that constitute the structural membrane of confined inflatable structures developed for protection of underground transportation tunnels and other large conduits.Friction tests at coupon level and slippage tests in a reduced‐scale inflatable structure were performed in order to evaluate the frictional characteristics of Vectran webbings.Tests at coupon level were performed to determine the friction coefficient for different surface types and conditions.Tests with the reduced‐scale inflatable structure contributed to the understanding of the friction characteristics at system level when subjected to different pressurization or depressurization sequences designed to induce slippage.Test results indicate that friction coefficient values at coupon level are about 29 percent higher than values derived from reduced‐scale tests.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 61204017 and 61334002the National Basic Research Program of Chinathe National Science and Technology Major Project of China
文摘AlGaN/GaN high electron mobility transistors (HEMTs) grown on Fe-modulation-doped (MD) and unintentionally doped (UID) GaN buffer layers are investigated and compared. Highly resistive GaN buffers (10^9Ω·cm) are induced by individual mechanisms for the electron traps' formation: the Fe MD buffer (sample A) and the UID buffer with high density of edge-type dislocations (7.24×10^9cm^-2, sample B). The 300K Hall test indicates that the mobility of sample A with Fe doping (2503cm^2V^-1s^-1) is much higher than sample B (1926cm^2V^-1s^-1) due to the decreased scattering effect on the two-dimensional electron gas. HEMT devices are fabricated on the two samples and pulsed I–V measurements are conducted. Device A shows better gate pinch-off characteristics and a higher threshold voltage (-2.63V) compared with device B (-3.71V). Lower gate leakage current |IGS| of device A (3.32×10^-7A) is present compared with that of device B (8.29×10^-7A). When the off-state quiescent points Q_2 (V GQ2=-8V, V DQ2=0V) are on, V th hardly shifts for device A while device B shows +0.21V positive threshold voltage shift, resulting from the existence of electron traps associated with the dislocations in the UID-GaN buffer layer under the gate. Under pulsed I–V and transconductance G m–V GS measurement, the device with the Fe MD-doped buffer shows more potential in improving reliability upon off-state stress.
基金the financial support of the National Natural Science Foundation of China(51178044)Program for New Century Excellent Talents in University (NCET-11-0579)
文摘It has been well recognized that, due to anisotropic packing structure of granular material, the true stress in a specimen is different from the applied stress. However, very few research efforts have been focused on quantifying the relationship between the true stress and applied stress. In this paper, we derive an explicit relationship among applied stress tensor, material-fabric tensor, and force-fabric tensor; and we propose a relationship between the true stress tensor and the applied stress tensor. The validity of this derived relationship is examined by using the discrete element simulation results for granular material under biaxial and triaxial loading con- ditions.
基金the Beijing Natural Science Foundation(Grant Nos.JQ24010 and Z220020)the Fundamental Research Funds for the Central Universities,and the National Natural Science Foundation of China(Grant No.52273279)Project supported by the Electron Microscopy Laboratory of Peking University,China for the use of Nion U-HERMES200 scanning transmission electron microscopy.We thank Materials Processing and Analysis Center,Peking University,for assistance with TEM characterization.The electron microscopy work was through a user project at Center of Oak Ridge National Laboratory(ORNL)for Nanophase Materials Sciences(CNMS),which is a DOE Office of Science User Facility.
文摘Minimizing disorder and defects is crucial for realizing the full potential of two-dimensional transition metal dichalcogenides(TMDs) materials and improving device performance to desired properties. However, the methods in defect controlcurrently face challenges with overly large operational areas and a lack of precision in targeting specific defects. Therefore,we propose a new method for the precise and universal defect healing of TMD materials, integrating real-time imaging withscanning transmission electron microscopy (STEM). This method employs electron beam irradiation to stimulate the diffusionmigration of surface-adsorbed adatoms on TMD materials grown by low-temperature molecular beam epitaxy (MBE),and heal defects within the diffusion range. This approach covers defect repairs ranging from zero-dimensional vacancydefects to two-dimensional grain orientation alignment, demonstrating its universality in terms of the types of samples anddefects. These findings offer insights into the use of atomic-level focused electron beams at appropriate voltages in STEMfor defect healing, providing valuable experience for achieving atomic-level precise fabrication of TMD materials.
基金This work was supported by the Research Foundation from Ministry of Education of China (No. 204060), and the Natural Science Foundation of Zhejiang Province (No. Y104203).
文摘A method based on Fourier spectrum analysis for predicting the performances of the X-ray compound lenses is briefly introduced, the theoretical result obtained is the same as that of Fresnel-Kirchhoff approach. A kind of technique named moulding is developed for fabricating the one-dimensional (1D) compound X-ray lens with Al material and the fabrication process is presented. In addition, a two-time coating method is used to improve the numerical apertures of the compound lenses. Furthermore, the focusing performance of the Al compound X-ray lens under the high energy X-rays is measured.
基金This work was sponsored by the U.S.Department of Homeland Security Science and Technology Directorate(S&T)Homeland Security Advanced Research Projects Agency(HSARPA).The reduced‐scale inflatable plug was manufactured by ILC Dover.
文摘The availability of high‐strength fabrics and progress in the development of large‐scale inflatable technology made possible the creation of temporary and quickly deployable structures for protection of underground infrastructure.Inflatable structures are relatively lightweight and portable,and can maintain the required rigidity while in operation.These benefits have prompted the development of inflatable structures for use in confined spaces,such as tunnels and large‐diameter pipes to act as barriers for containing flooding with minimal infrastructure modification.This work presents experimental results obtained from the evaluation of frictional characteristics of the fabric material that constitute the structural membrane of confined inflatable structures developed for protection of underground transportation tunnels and other large conduits.Friction tests at coupon level and slippage tests in a reduced‐scale inflatable structure were performed in order to evaluate the frictional characteristics of Vectran webbings.Tests at coupon level were performed to determine the friction coefficient for different surface types and conditions.Tests with the reduced‐scale inflatable structure contributed to the understanding of the friction characteristics at system level when subjected to different pressurization or depressurization sequences designed to induce slippage.Test results indicate that friction coefficient values at coupon level are about 29 percent higher than values derived from reduced‐scale tests.