期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A bionic controllable strain membrane for cell stretching at air–liquid interface inspired by papercutting
1
作者 Yuanrong Li Mingjun Xie +4 位作者 Shang Lv Yuan Sun Zhuang Li Zeming Gu Yong He 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期486-499,共14页
Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and... Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and a suitable material for mimicking basement membrane are currently lacking.Here,we present an innovative biomimetic controllable strain membrane(BCSM)at an air–liquid interface(ALI)to reconstruct alveolar respiration.The BCSM consists of a high-precision three-dimensional printing melt-electrowritten polycaprolactone(PCL)mesh,coated with a hydrogel substrate—to simulate the important functions(such as stiffness,porosity,wettability,and ALI)of alveolar microenvironments,and seeded pulmonary epithelial cells and vascular endothelial cells on either side,respectively.Inspired by papercutting,the BCSM was fabricated in the plane while it operated in three dimensions.A series of the topological structure of the BCSM was designed to control various local-area strain,mimicking alveolar varied deformation.Lopinavir/ritonavir could reduce Lamin A expression under over-stretch condition,which might be effective in preventing ventilator-induced lung injury.The biomimetic lung-unit model with BCSM has broader application prospects in alveoli-related research in the future,such as in drug toxicology and metabolism. 展开更多
关键词 biomimetic air-blood barrier composite material design controllable mechanical stimulus structure
下载PDF
High-temperature dielectric switch and second harmonic generation integrated in a stimulus responsive material
2
作者 Yingsong Xue Zhixu Zhang +3 位作者 Pingping Shi Wanying Zhang Qiong Ye Dawei Fu 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第1期539-542,共4页
Stimulus re s ponsive materials can provide a variety of desirable properties in one equipment unit,such as optoelectronic devices,data communications,actuators,memories,sensors and capacitors.However,it remains a lar... Stimulus re s ponsive materials can provide a variety of desirable properties in one equipment unit,such as optoelectronic devices,data communications,actuators,memories,sensors and capacitors.However,it remains a large challenge to design such stimulus responsive materials,especially functional materials having both dielectric switch and second harmonic generation(SHG).Here,a new stimuli-responsive switchable material [(CH_(3))_(3)N(CH_(2))_(2)Cl]_(2)]Mn(SCN)_(4)(H_(2)O)_(2)] was discovered as a potential secondharmonic generation(SHG) dielectric switch.It is worth noting that it has SHG characteristics before and after undergoing reversible high-temperature phase transitions.In this work,we successfully refined the tetramethylammonium cation to obtain a quasi-spherical cation,which is tetramethylchloroethylamine(TMCEM) cation.By substituting H with a halogen,the increased steric hindrance of the molecular makes energy barrier increased,resulting in the reversible high-temperature phase transition.At the same time,the interactions of quasi-spherical cations and [Mn(SCN)_(4)(H_(2)O)_(2)]^(2-) anions affect a noncentrosymmetric structure to induce the SHG effect.These findings provide a new approach to design novel functional switch materials. 展开更多
关键词 Dielectric switch Second harmonic generation High-temperature Phase transition stimulus responsive material
原文传递
Deuteration triggered downward shift of dielectric phase transition temperature in a hydrogen-bonded molecular crystal
3
作者 Bei-Dou Liang Tong Jin +4 位作者 Le-Ping Miao Chao-Yang Chai Chang-Chun Fan Xiang-Bin Han Wen Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第3期1422-1424,共3页
Deuteration of hydrogen-bonded phase transition crystals can increase the transition temperatures due to the isotope effect. But rare examples show the opposite trend that originates from the structural changes of the... Deuteration of hydrogen-bonded phase transition crystals can increase the transition temperatures due to the isotope effect. But rare examples show the opposite trend that originates from the structural changes of the hydrogen bond, known as the geometric H/D isotope effect. Herein, we report an organic crystal, diethylammonium hydrogen 1,4-terephthalate, exhibits a reversible structural phase transition and dielectric switching. Structural study shows the cations reside in channels formed by one-dimensional hydrogen-bonded anionic chains and undergo an order-disorder transition at around 206 K. The deuterated counterpart shows an elongation of the O…O hydrogen bond by about 0.005 A. This geometric isotope effect releases the internal pressure of the anionic host on the cation guests and results in a downward shift of the phase transition temperature by 10 K. 展开更多
关键词 Dielectric phase transition stimulus responsive material DEUTERATION Geometric isotope effect Downward shift of transition temperature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部