With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels...With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels,due to its high gravimetric energy density(142 MJ kg^(-1)),high abundance(H_(2)O),and environmentalfriendliness.However,due to its low volume density,effective and safe hydrogen storage techniques are now becoming the bottleneck for the"hydrogen economy".Under such a circumstance,Mg-based hydrogen storage materials garnered tremendous interests due to their high hydrogen storage capacity(~7.6 wt%for MgH_(2)),low cost,and excellent reversibility.However,the high thermodynamic stability(ΔH=-74.7 kJ mol^(-1)H_(2))and sluggish kinetics result in a relatively high desorption temperature(>300℃),which severely restricts widespread applications of MgH_(2).Nano-structuring has been proven to be an effective strategy that can simultaneously enhance the ab/de-sorption thermodynamic and kinetic properties of MgH_(2),possibly meeting the demand for rapid hydrogen desorption,economic viability,and effective thermal management in practical applications.Herein,the fundamental theories,recent advances,and practical applications of the nanostructured Mg-based hydrogen storage materials are discussed.The synthetic strategies are classified into four categories:free-standing nano-sized Mg/MgH_(2)through electrochemical/vapor-transport/ultrasonic methods,nanostructured Mg-based composites via mechanical milling methods,construction of core-shell nano-structured Mg-based composites by chemical reduction approaches,and multi-dimensional nano-sized Mg-based heterostructure by nanoconfinement strategy.Through applying these strategies,near room temperature ab/de-sorption(<100℃)with considerable high capacity(>6 wt%)has been achieved in nano Mg/MgH_(2)systems.Some perspectives on the future research and development of nanostructured hydrogen storage materials are also provided.展开更多
MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high...MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2).展开更多
The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).Mg...The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).MgH_(2)was mixed evenly with different amounts of Ni@CNT(2.5,5.0 and 7.5,wt.%)through ball milling.The MgH_(2)−5wt.%Ni@CNT can absorb 5.2 wt.%H_(2)at 423 K in 200 s and release about 3.75 wt.%H_(2)at 573 K in 1000 s.And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol(H_(2)).The in-situ generated Mg_(2)Ni/Mg_(2)NiH4 exhibits a good catalytic effect due to the provided more diffusion channels that can be used as“hydrogen pump”.And the presence of carbon nanotubes improves the properties of MgH_(2)to some extent.展开更多
While TiFe alloy has recently attracted attention as the efficient catalyst to enhance de/hydrogenation rates of Mg/MgH_(2),the difficulty of its activation characteristics has hindered further improvement of reaction...While TiFe alloy has recently attracted attention as the efficient catalyst to enhance de/hydrogenation rates of Mg/MgH_(2),the difficulty of its activation characteristics has hindered further improvement of reaction kinetics.Herein,we report that the TiFe_(0.92)Mn_(0.04)Co_(0.04) catalyst can overcome the abovementioned challenges.The synthesized MgH_(2)-30 wt% TiFe_(0.92)Mn_(0.04)Co_(0.04) can release 4.5 wt%of hydrogen in 16 min at 250℃,three times as fast as MgH_(2).The activation energy of dehydrogenation was as low as 84.6 kJ mol^(-1),which is 46.8%reduced from pure MgH_(2).No clear degradation of reaction rates and hydrogen storage capacity was observed for at least 30 cycles.Structural studies reveal that TiFe_(0.92)Mn_(0.04)Co_(0.04) partially decomposes to in-situ generatedα-Fe particles dispersed on TiFe_(0.92)Mn_(0.04)Co_(0.04).The presence ofα-Fe reduces the formation of an oxide layer on TiFe_(0.92)Mn_(0.04)Co_(0.04),enabling the activation processes.At the same time,the hydrogen incorporation capabilities of TiFe_(0.92)Mn_(0.04)Co_(0.04) can provide more hydrogen diffusion paths,which promote hydrogen dissociation and diffusion.These discoveries demonstrate the advanced nature and importance of combining the in-situ generatedα-Fe with TiFe_(0.92)Mn_(0.04)Co_(0.04).It provides a new strategy for designing highly efficient and stable catalysts for Mg-based hydrogen storage materials.展开更多
Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity,environmental benignity,and high Clarke number characteristics.However,the limited thermodynamic...Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity,environmental benignity,and high Clarke number characteristics.However,the limited thermodynamics and kinetic properties pose major challenges for their engineering applications.Herein,we review the recent progress in improving their thermodynamics and kinetics,with an emphasis on the models and the influence of various parameters in the calculated models.Subsequently,the impact of alloying,composite,and nanocrystallization on both thermodynamics and dynamics are discussed in detail.In particular,the correlation between various modification strategies and the hydrogen capacity,dehydrogenation enthalpy and temperature,hydriding/dehydriding rates are summarized.In addition,the mechanism of hydrogen storage processes of Mg-based materials is discussed from the aspect of classical kinetic theories and microscope hydrogen transferring behavior.This review concludes with an outlook on the remaining challenge issues and prospects.展开更多
Mg-based materials have been intensively studied for hydrogen storage applications due to their high energy density up to 2600 Wh/kg or 3700 Wh/L.However,the Mg-based materials with poor kinetics and the necessity for...Mg-based materials have been intensively studied for hydrogen storage applications due to their high energy density up to 2600 Wh/kg or 3700 Wh/L.However,the Mg-based materials with poor kinetics and the necessity for a high temperature to achieve 0.1 MPa hydrogen equilibrium pressure limit the applications in the onboard storage in Fuel cell vehicles(FCVs).Over the past decades,many methods have been applied to improve the hydriding/dehydriding(H/D)kinetics of Mg/MgH 2 by forming amorphous or nanosized particles,adding catalysts and employing external energy field,etc.However,which method is more effective and the intrinsic mechanism they work are widely differing versions.The hydrogenation and dehydrogenation behaviors of Mg-based alloys analyzing by kinetic models is an efficient way to reveal the H/D kinetic mechanism.However,some recently proposed models with physical meaning and simple analysis method are not known intimately by researchers.Therefore,this review focuses on the enhancement method of kinetics in Mg-based hydrogen storage materials and introduces the new kinetic models.展开更多
Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as w...Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as well as their extraordinary high gravimetric and volumetric storage densities.This review work provides a broad overview of the most appealing systems and of their hydrogenation/dehydrogenation properties.Special emphasis is placed on reviewing the efforts made by the scientific community in improving the material’s thermodynamic and kinetic properties while maintaining a high hydrogen storage capacity.展开更多
Rechargeable batteries and supercapacitors are widely investigated as the most important electrochemical energy storage devices nowadays due to the booming energy demand for electric vehicles and hand-held electronics...Rechargeable batteries and supercapacitors are widely investigated as the most important electrochemical energy storage devices nowadays due to the booming energy demand for electric vehicles and hand-held electronics. The large surface-area-to-volume ratio and internal surface areas endow two-dimensional(2D) materials with high mobility and high energy density; therefore, 2D materials are very promising candidates for Li ion batteries and supercapacitors with comprehensive investigations. In 2011, a new kind of 2D transition metal carbides, nitrides and carbonitrides, MXene, were successfully obtained from MAX phases. Since then about 20 different kinds of MXene have been prepared. Other precursors besides MAX phases and even other methods such as chemical vapor deposition(CVD) were also applied to prepare MXene, opening new doors for the preparation of new MXene. Their 2D nature and good electronic properties ensure the inherent advantages as electrode materials for electrochemical energy storage. In this review, we summarize the recent progress in the development of MXene with emphasis on the applications to electrochemical energy storage. Also, future perspective and challenges of MXene-based materials are briefly discussed regrading electrochemical energy storage.展开更多
Hydrogen can serve as a carrier to store renewable energy in large scale.However,hydrogen storage still remains a challenge in the current stage.It is difficult to meet the technical requirements applying the conventi...Hydrogen can serve as a carrier to store renewable energy in large scale.However,hydrogen storage still remains a challenge in the current stage.It is difficult to meet the technical requirements applying the conventional storage of compressed gaseous hydrogen in high-pressure tanks or the solid-state storage of hydrogen in suitable materials.In the present work,a gaseous and solid-state(G-S)hybrid hydrogen storage system with a low working pressure below 5 MPa for a 10 kW hydrogen energy storage experiment platform is developed and validated.A Ti-Mn type hydrogen storage alloy with an effective hydrogen capacity of 1.7 wt%was prepared for the G-S hybrid hydrogen storage system.The G-S hybrid hydrogen storage tank has a high volumetric hydrogen storage density of 40.07 kg H_(2)m^(-3) and stores hydrogen under pressure below5 MPa.It can readily release enough hydrogen at a temperature as low as-15C when the FC system is not fully activated and hot water is not available.The energy storage efficiency of this G-S hybrid hydrogen storage system is calculated to be 86.4%-95.9%when it is combined with an FC system.This work provides a method on how to design a G-S hydrogen storage system based on practical demands and demonstrates that the G-S hybrid hydrogen storage is a promising method for stationary hydrogen storage application.展开更多
A SnO-graphite composite material, which can deliver high capacities and good cycling stability compared with unsupported SnO, was described. This material prepared via chemical co-precipitation reaction in the presen...A SnO-graphite composite material, which can deliver high capacities and good cycling stability compared with unsupported SnO, was described. This material prepared via chemical co-precipitation reaction in the presence of graphite consists of high dispersion of SnO with a size of about several hundred nanometers in the graphite. The phase structure was analyzed by X-ray diffraction (XRD). The morphology and the element distribution were examined by scanning electron microscopy (SEM) equipped with energy spectrum. The results show that the SnO-graphite composites produced by slowly hydrolysis have higher rechargeable capacities than pure graphite and better cycling performance than SnO.展开更多
Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3composi...Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3composite materials were synthesized by one-step synthesis method. The chemical composition, morphology, structure, and thermal properties were investigated by XRD, EDS, SEM, and DSC. The results show that NaCl can be absorbed by Al2O3particle from 800 to 900 ℃ for Al2O3particle surface is rich active structure. The results also indicate that the leakage of NaCl when the phase change can be prevented by Al2O3particles and the enthalpy of phase change of NaCl-Al2O3material is 362 J/g. The composites have an excellent heat storage capacity. Therefore, this study contributes to one new thought and method to prepare high temperature heat storage material and this material can be applied in future thermal engineering.展开更多
A novel process for synthesis gas production over Circulating Fluidized Bed (CFB) using oxygen storage materials as oxygen carder was reported. First, oxygen in the air was chemically fixed and converted to lattice ...A novel process for synthesis gas production over Circulating Fluidized Bed (CFB) using oxygen storage materials as oxygen carder was reported. First, oxygen in the air was chemically fixed and converted to lattice oxygen of oxygen storage materials over regenerator, and then methane was selectively oxidized to synthesis gas with lattice oxygen of oxygen storage materials over riser reactor. The results from simulation reaction of CFB by sequential redox reaction on a fixed bed reactor using lanthanum-based perovskite LaFeO3 and La0.8Sr0.2Fe0.9CO0.1O3 oxides prepared by sol-gel, suggested that the depleted oxygen species could be regenerated, and methane could be oxidized to synthesis gas by lattice oxygen with high selectivity. The partial oxidation of methane to synthesis gas over CFB using lattice oxygen of the oxygen storage materials instead of gaseous oxygen should be possibly applicable.展开更多
There was an obvious relationship between seed testa structure, storage material and resistance to A. flavus of peanut. Results showed that seed testa of peanut germplasm with high resistance (HR) to A. flavus infec...There was an obvious relationship between seed testa structure, storage material and resistance to A. flavus of peanut. Results showed that seed testa of peanut germplasm with high resistance (HR) to A. flavus infection had thicker wax layer, integrated and tight epidermis layer, regular vascular tissue range. However, the seed testa of peanut germplasm with high sensitivity (HS) to A. flavus had the reverse results, and results of those with medium resistance (MR) to A. flavus lay in between, but changes of testa thickness were not significant among different resistance kinds. Results also showed that some seed storage materials were closely related with resistance potential to A. flavus. It seemed that varieties with higher resistance to A. flavus had higher oleic acid and protein content, lower linoleic acid and fat content. Content of palm acid, total sugar and VE did not show positive relationship with the resistance to A. flavus.展开更多
Hydrogen storage is a key link in hydrogen economy,where solid-state hydrogen storage is considered as the most promising approach because it can meet the requirement of high density and safety.Thereinto,magnesium-bas...Hydrogen storage is a key link in hydrogen economy,where solid-state hydrogen storage is considered as the most promising approach because it can meet the requirement of high density and safety.Thereinto,magnesium-based materials(MgH_(2))are currently deemed as an attractive candidate due to the potentially high hydrogen storage density(7.6 wt%),however,the stable thermodynamics and slow kinetics limit the practical application.In this study,we design a ternary transition metal sulfide FeNi_(2)S_(4)with a hollow balloon structure as a catalyst of MgH_(2)to address the above issues by constructing a MgH_(2)/Mg_(2)NiH_(4)-MgS/Fe system.Notably,the dehydrogenation/hydrogenation of MgH_(2)has been significantly improved due to the synergistic catalysis of active species of Mg_(2)Ni/Mg_(2)NiH_(4),MgS and Fe originated from the MgH_(2)-FeNi_(2)S_(4)composite.The hydrogen absorption capacity of the MgH_(2)-FeNi_(2)S_(4)composite reaches to 4.02 wt%at 373 K for 1 h,a sharp contrast to the milled-MgH_(2)(0.67 wt%).In terms of dehydrogenation process,the initial dehydrogenation temperature of the composite is 80 K lower than that of the milled-MgH_(2),and the dehydrogenation activation energy decreases by 95.7 kJ·mol-1 compared with the milled-MgH_(2)(161.2 kJ·mol^(-1)).This method provides a new strategy for improving the dehydrogenation/hydrogenation performance of the MgH_(2)material.展开更多
Magnesium-based energy materials, which combine promising energy-related functional properties with low cost, environmental compatibility and high availability, have been regarded as fascinating candidates for sustain...Magnesium-based energy materials, which combine promising energy-related functional properties with low cost, environmental compatibility and high availability, have been regarded as fascinating candidates for sustainable energy conversion and storage. In this review,we provide a timely summary on the recent progress in three types of important Mg-based energy materials, based on the fundamental strategies of composition and structure engineering. With regard to Mg-based materials for batteries, we systematically review and analyze different material systems, structure regulation strategies as well as the relevant performance in Mg-ion batteries(MIBs) and Mg-air batteries(MABs), covering cathodes, electrolytes, anodes for MIBs, and anodes for MABs;as to Mg-based hydrogen storage materials, we discuss how catalyst adding, composite, alloying and nanostructuring improve the kinetic and thermodynamic properties of de/hydrogenation reactions, and in particular, the impacts of composition and structure modification on hydrogen absorption/dissociation processes and free energy modification mechanism are focused;regarding Mg-based thermoelectric materials, the relations between composition/structure and electrical/thermal transport properties of Mg_(3)X_(2)(X = Sb, Bi), Mg_(2)X(X = Si, Ge, Sn) and Mg Ag Sb-based materials, together with the representative research progress of each material system, are summarized and discussed. Finally, by pointing out remaining challenges and providing possible solutions, this review aims to shed light on the directions and perspectives for practical applications of magnesium-based energy materials in the future.展开更多
Two-dimensional Ti_(3)C_(2)T_(x) MXenes exposing different active facets are introduced into MgH_(2), and their catalytic effects are systematically investigated in depth through experimental and theoretical approache...Two-dimensional Ti_(3)C_(2)T_(x) MXenes exposing different active facets are introduced into MgH_(2), and their catalytic effects are systematically investigated in depth through experimental and theoretical approaches. Excluding factors such as interlayer space, surface functional groups and experimental contingency, the exposed facets is considered to be the dominant factor for catalytic activity of Ti_(3)C_(2)T_(x) towards MgH_(2).More exposed edge facets of Ti_(3)C_(2)T_(x) displays higher catalytic activity than that with more exposed basal facets, which also leads to different rate-controlling steps of MgH_(2) in the de/hydrogenation process. The low work function, strong hydrogen affinity and high content of in situ metallic Ti for the edge facet contribute the high catalytic activity. This work will give insights into the structural design of two-dimensional Ti_(3)C_(2)T_(x) MXene used for enhancing the catalytic activity in various fields.展开更多
An evident improvement on activation properties of hydrogen storage was made by sput- tering an amorphous coating of commercial Si on TiFe alloy.SEM observation revealed an obvious difference between the morphologies ...An evident improvement on activation properties of hydrogen storage was made by sput- tering an amorphous coating of commercial Si on TiFe alloy.SEM observation revealed an obvious difference between the morphologies before and after hydrogen storage for TiFe alloy with or without amorphous Si coating.It is believed that this may be quite a developable hydrogen storage material.展开更多
Dynamic oxygen storage and release capability (OSC) measurement apparatus was designed to evaluate the OSC performance of ceria-based oxygen storage material. The optimum measurement condition was at a frequency of ...Dynamic oxygen storage and release capability (OSC) measurement apparatus was designed to evaluate the OSC performance of ceria-based oxygen storage material. The optimum measurement condition was at a frequency of 0.1 Hz with the inlet gas-flow sequence CO (5S)→O2(5S)→CO→O2 and a flow rate of 300 ml·min^-1. Under this condition, similar regular square wave in the inlet and outlet of the reactor was obtained to guarantee the reliability of the dynamic OSC results. The dynamic OSC performance of the CeO2 and Ce0.67Zr0.33O2 mixed oxide prepared using the citric sol-gel method was studied at the optimum measurement condition with focus on both quantitative and qualitative analyses, The results reveal distinctly that Ce0.67Zr0.33O2 had better dynamic OSC performance because of its higher oxygen migration rate than CeO2. Under dynamic conditions, two CO2 production peaks occurred corresponding to the CO pulse and the O2 pulse, respectively, during the entire cycle. The intensity and ratio between the two CO2 productions were highly influenced by temperature and frequency indicating complex surface phenomena during the oxygen storage/release process, As a result, this set-up can be applied to the evaluation of ceria-based material on the OSC performance.展开更多
Graphene, a single layer of graphite, has been one of the first real two dimensional (2D) materials isolated in 2004. Thus, graphene is becoming a cutting edge material that opens up new horizons to a whole family o...Graphene, a single layer of graphite, has been one of the first real two dimensional (2D) materials isolated in 2004. Thus, graphene is becoming a cutting edge material that opens up new horizons to a whole family of 2D materials beyond the limited current applicability of graphene. The unique advantages of graphene and analogue 2D materials, such as atomic-scale thickness, high specific surface area, mechanically flexible robustness, superior storage capacity, endow them as high-performance electrodes lbr electrochemical energy storage devices. Although it is hard to say whether or not graphene and 2D materials will be implemented in future energy technologies, the recent achievements in this field demonstrate that their roles will be noticeable in the near future.展开更多
In this paper, the mechanical and thermal properties of a sand-clay ceramic with additives coal bottom ash (CBA) waste from incinerator coal power plant are investigated to develop an alternative material for thermal ...In this paper, the mechanical and thermal properties of a sand-clay ceramic with additives coal bottom ash (CBA) waste from incinerator coal power plant are investigated to develop an alternative material for thermal energy storage (TES). Ceramic balls are developed at 1000°C and 1060°C using sintering or firing method. The obtained ceramics were compressed with a compression machine and thermally analyse using Decagon devise KD2 Pro thermal analyser. A muffle furnace was also used for thermal cycling at 610°C. It was found that the CBA increased the porosity, which resulted in the increase of the axial tensile strength reaching 3.5 MPa for sand-clay and ash ceramic. The ceramic balls with the required tensile strength for TES were selected. Their volumetric heat capacity, and thermal conductivity range respectively from 2.4075 MJ·m-3·°C-1 to 3.426 MJ·m-3·°C-1 and their thermal conductivity from 0.331 Wm-1·K-1, to 1.014 Wm-1·K-1 depending on sand origin, size and firing temperature. The selected formulas have good thermal stability because the most fragile specimens after 60 thermal cycles did not present any cracks. These properties allow envisioning the use of the ceramic balls developed as filler material for thermocline thermal energy storage (structured beds) in Concentrating Solar Power plants. And for other applications like solar cooker and solar dryer.展开更多
基金support from the National Key Research&Development Program(2022YFB3803700)of ChinaNational Natural Science Foundation(No.52171186)financial support from the Center of Hydrogen Science,Shanghai Jiao Tong University。
文摘With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels,due to its high gravimetric energy density(142 MJ kg^(-1)),high abundance(H_(2)O),and environmentalfriendliness.However,due to its low volume density,effective and safe hydrogen storage techniques are now becoming the bottleneck for the"hydrogen economy".Under such a circumstance,Mg-based hydrogen storage materials garnered tremendous interests due to their high hydrogen storage capacity(~7.6 wt%for MgH_(2)),low cost,and excellent reversibility.However,the high thermodynamic stability(ΔH=-74.7 kJ mol^(-1)H_(2))and sluggish kinetics result in a relatively high desorption temperature(>300℃),which severely restricts widespread applications of MgH_(2).Nano-structuring has been proven to be an effective strategy that can simultaneously enhance the ab/de-sorption thermodynamic and kinetic properties of MgH_(2),possibly meeting the demand for rapid hydrogen desorption,economic viability,and effective thermal management in practical applications.Herein,the fundamental theories,recent advances,and practical applications of the nanostructured Mg-based hydrogen storage materials are discussed.The synthetic strategies are classified into four categories:free-standing nano-sized Mg/MgH_(2)through electrochemical/vapor-transport/ultrasonic methods,nanostructured Mg-based composites via mechanical milling methods,construction of core-shell nano-structured Mg-based composites by chemical reduction approaches,and multi-dimensional nano-sized Mg-based heterostructure by nanoconfinement strategy.Through applying these strategies,near room temperature ab/de-sorption(<100℃)with considerable high capacity(>6 wt%)has been achieved in nano Mg/MgH_(2)systems.Some perspectives on the future research and development of nanostructured hydrogen storage materials are also provided.
基金supported by research programs of National Natural Science Foundation of China(52101274,51731002)Natural Science Foundation of Shandong Province(No.ZR2020QE011)Youth Top Talent Foundation of Yantai University(2219008).
文摘MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2).
基金the National Natural Science Foundation of China(Nos.52101274,51731002)Natural Science Foundation of Shandong Province,China(Nos.ZR2020QE011,ZR2022ME089)+1 种基金Youth Top Talent Foundation of Yantai University,China(No.2219008)Graduate Innovation Foundation of Yantai University,China(No.GIFYTU2240).
文摘The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).MgH_(2)was mixed evenly with different amounts of Ni@CNT(2.5,5.0 and 7.5,wt.%)through ball milling.The MgH_(2)−5wt.%Ni@CNT can absorb 5.2 wt.%H_(2)at 423 K in 200 s and release about 3.75 wt.%H_(2)at 573 K in 1000 s.And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol(H_(2)).The in-situ generated Mg_(2)Ni/Mg_(2)NiH4 exhibits a good catalytic effect due to the provided more diffusion channels that can be used as“hydrogen pump”.And the presence of carbon nanotubes improves the properties of MgH_(2)to some extent.
基金supported by The National Key Research and Development Program of China(2023YFB3809100)the National Natural Science Foundation of China(U23A200722)the Fundamental Research Funds for the Central Universities(2023CDJXY-016).
文摘While TiFe alloy has recently attracted attention as the efficient catalyst to enhance de/hydrogenation rates of Mg/MgH_(2),the difficulty of its activation characteristics has hindered further improvement of reaction kinetics.Herein,we report that the TiFe_(0.92)Mn_(0.04)Co_(0.04) catalyst can overcome the abovementioned challenges.The synthesized MgH_(2)-30 wt% TiFe_(0.92)Mn_(0.04)Co_(0.04) can release 4.5 wt%of hydrogen in 16 min at 250℃,three times as fast as MgH_(2).The activation energy of dehydrogenation was as low as 84.6 kJ mol^(-1),which is 46.8%reduced from pure MgH_(2).No clear degradation of reaction rates and hydrogen storage capacity was observed for at least 30 cycles.Structural studies reveal that TiFe_(0.92)Mn_(0.04)Co_(0.04) partially decomposes to in-situ generatedα-Fe particles dispersed on TiFe_(0.92)Mn_(0.04)Co_(0.04).The presence ofα-Fe reduces the formation of an oxide layer on TiFe_(0.92)Mn_(0.04)Co_(0.04),enabling the activation processes.At the same time,the hydrogen incorporation capabilities of TiFe_(0.92)Mn_(0.04)Co_(0.04) can provide more hydrogen diffusion paths,which promote hydrogen dissociation and diffusion.These discoveries demonstrate the advanced nature and importance of combining the in-situ generatedα-Fe with TiFe_(0.92)Mn_(0.04)Co_(0.04).It provides a new strategy for designing highly efficient and stable catalysts for Mg-based hydrogen storage materials.
基金supported by the Chongqing Special Key Project of Technology Innovation and Application Development,China(cstc2019jscx-dxwt B0029)the National Natural Science Foundation of China(51871143)+5 种基金the Science and Technology Committee of Shanghai(19010500400)the Shanghai Rising-Star Program(21QA1403200)Chongqing Research Program of Basic Research and Frontier Technology(No.cstc2019jcyj-msxm X0306)the Start-up Funds of Chongqing University(02110011044171)the Senior Talent Start-up Funds of Jiangsu University(4111310024)the Independent Research Project of State Key Laboratory of Mechanical Transmissions(SKLMT-ZZKT-2021M11)
文摘Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity,environmental benignity,and high Clarke number characteristics.However,the limited thermodynamics and kinetic properties pose major challenges for their engineering applications.Herein,we review the recent progress in improving their thermodynamics and kinetics,with an emphasis on the models and the influence of various parameters in the calculated models.Subsequently,the impact of alloying,composite,and nanocrystallization on both thermodynamics and dynamics are discussed in detail.In particular,the correlation between various modification strategies and the hydrogen capacity,dehydrogenation enthalpy and temperature,hydriding/dehydriding rates are summarized.In addition,the mechanism of hydrogen storage processes of Mg-based materials is discussed from the aspect of classical kinetic theories and microscope hydrogen transferring behavior.This review concludes with an outlook on the remaining challenge issues and prospects.
基金H.Shao acknowledges the Macao Science and Technol-ogy Development Fund(FDCT)for funding(project no.118/2016/A3 and 0062/2018/A2)and this work was also par-tially supported by a Start-Up Research Fund from the Uni-versity of Macao(SRG2016-00088-FST)+5 种基金Q.Li also thanks the financial support from the National Natural Science Foun-dation of China(51671118)Young Elite Scientists Sponsor-ship Program by CAST(2017QNRC001)the“Chenguang”Program from the Shanghai Municipal Education Commission(17CG42)Science and Technology Committee of Shanghai(16520721800)the Program for Professor of Special Ap-pointment(Eastern Scholar)by Shanghai Municipal Educa-tion Commission(No.TP2015040).。
文摘Mg-based materials have been intensively studied for hydrogen storage applications due to their high energy density up to 2600 Wh/kg or 3700 Wh/L.However,the Mg-based materials with poor kinetics and the necessity for a high temperature to achieve 0.1 MPa hydrogen equilibrium pressure limit the applications in the onboard storage in Fuel cell vehicles(FCVs).Over the past decades,many methods have been applied to improve the hydriding/dehydriding(H/D)kinetics of Mg/MgH 2 by forming amorphous or nanosized particles,adding catalysts and employing external energy field,etc.However,which method is more effective and the intrinsic mechanism they work are widely differing versions.The hydrogenation and dehydrogenation behaviors of Mg-based alloys analyzing by kinetic models is an efficient way to reveal the H/D kinetic mechanism.However,some recently proposed models with physical meaning and simple analysis method are not known intimately by researchers.Therefore,this review focuses on the enhancement method of kinetics in Mg-based hydrogen storage materials and introduces the new kinetic models.
文摘Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as well as their extraordinary high gravimetric and volumetric storage densities.This review work provides a broad overview of the most appealing systems and of their hydrogenation/dehydrogenation properties.Special emphasis is placed on reviewing the efforts made by the scientific community in improving the material’s thermodynamic and kinetic properties while maintaining a high hydrogen storage capacity.
基金supported by Tianjin Municipal Science and Technology Commission(16PTSYJC00010)in China
文摘Rechargeable batteries and supercapacitors are widely investigated as the most important electrochemical energy storage devices nowadays due to the booming energy demand for electric vehicles and hand-held electronics. The large surface-area-to-volume ratio and internal surface areas endow two-dimensional(2D) materials with high mobility and high energy density; therefore, 2D materials are very promising candidates for Li ion batteries and supercapacitors with comprehensive investigations. In 2011, a new kind of 2D transition metal carbides, nitrides and carbonitrides, MXene, were successfully obtained from MAX phases. Since then about 20 different kinds of MXene have been prepared. Other precursors besides MAX phases and even other methods such as chemical vapor deposition(CVD) were also applied to prepare MXene, opening new doors for the preparation of new MXene. Their 2D nature and good electronic properties ensure the inherent advantages as electrode materials for electrochemical energy storage. In this review, we summarize the recent progress in the development of MXene with emphasis on the applications to electrochemical energy storage. Also, future perspective and challenges of MXene-based materials are briefly discussed regrading electrochemical energy storage.
基金supported by State Grid Corporation of China(No.SGRIDGKJ[2016]123)Education Department of Guangxi Zhuang Autonomous Region(No.2019KY0021)the Natural Science Foundation of Guangxi Province(2019GXNSFBA185004,2018GXNSFAA281308,2019GXNSFAA245050)。
文摘Hydrogen can serve as a carrier to store renewable energy in large scale.However,hydrogen storage still remains a challenge in the current stage.It is difficult to meet the technical requirements applying the conventional storage of compressed gaseous hydrogen in high-pressure tanks or the solid-state storage of hydrogen in suitable materials.In the present work,a gaseous and solid-state(G-S)hybrid hydrogen storage system with a low working pressure below 5 MPa for a 10 kW hydrogen energy storage experiment platform is developed and validated.A Ti-Mn type hydrogen storage alloy with an effective hydrogen capacity of 1.7 wt%was prepared for the G-S hybrid hydrogen storage system.The G-S hybrid hydrogen storage tank has a high volumetric hydrogen storage density of 40.07 kg H_(2)m^(-3) and stores hydrogen under pressure below5 MPa.It can readily release enough hydrogen at a temperature as low as-15C when the FC system is not fully activated and hot water is not available.The energy storage efficiency of this G-S hybrid hydrogen storage system is calculated to be 86.4%-95.9%when it is combined with an FC system.This work provides a method on how to design a G-S hydrogen storage system based on practical demands and demonstrates that the G-S hybrid hydrogen storage is a promising method for stationary hydrogen storage application.
文摘A SnO-graphite composite material, which can deliver high capacities and good cycling stability compared with unsupported SnO, was described. This material prepared via chemical co-precipitation reaction in the presence of graphite consists of high dispersion of SnO with a size of about several hundred nanometers in the graphite. The phase structure was analyzed by X-ray diffraction (XRD). The morphology and the element distribution were examined by scanning electron microscopy (SEM) equipped with energy spectrum. The results show that the SnO-graphite composites produced by slowly hydrolysis have higher rechargeable capacities than pure graphite and better cycling performance than SnO.
基金Funded by the National Natural Science of China(No.2012BAA05B06)
文摘Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3composite materials were synthesized by one-step synthesis method. The chemical composition, morphology, structure, and thermal properties were investigated by XRD, EDS, SEM, and DSC. The results show that NaCl can be absorbed by Al2O3particle from 800 to 900 ℃ for Al2O3particle surface is rich active structure. The results also indicate that the leakage of NaCl when the phase change can be prevented by Al2O3particles and the enthalpy of phase change of NaCl-Al2O3material is 362 J/g. The composites have an excellent heat storage capacity. Therefore, this study contributes to one new thought and method to prepare high temperature heat storage material and this material can be applied in future thermal engineering.
基金Project supported by the National Natural Science Foundation of China (20306016, 20322201)
文摘A novel process for synthesis gas production over Circulating Fluidized Bed (CFB) using oxygen storage materials as oxygen carder was reported. First, oxygen in the air was chemically fixed and converted to lattice oxygen of oxygen storage materials over regenerator, and then methane was selectively oxidized to synthesis gas with lattice oxygen of oxygen storage materials over riser reactor. The results from simulation reaction of CFB by sequential redox reaction on a fixed bed reactor using lanthanum-based perovskite LaFeO3 and La0.8Sr0.2Fe0.9CO0.1O3 oxides prepared by sol-gel, suggested that the depleted oxygen species could be regenerated, and methane could be oxidized to synthesis gas by lattice oxygen with high selectivity. The partial oxidation of methane to synthesis gas over CFB using lattice oxygen of the oxygen storage materials instead of gaseous oxygen should be possibly applicable.
文摘There was an obvious relationship between seed testa structure, storage material and resistance to A. flavus of peanut. Results showed that seed testa of peanut germplasm with high resistance (HR) to A. flavus infection had thicker wax layer, integrated and tight epidermis layer, regular vascular tissue range. However, the seed testa of peanut germplasm with high sensitivity (HS) to A. flavus had the reverse results, and results of those with medium resistance (MR) to A. flavus lay in between, but changes of testa thickness were not significant among different resistance kinds. Results also showed that some seed storage materials were closely related with resistance potential to A. flavus. It seemed that varieties with higher resistance to A. flavus had higher oleic acid and protein content, lower linoleic acid and fat content. Content of palm acid, total sugar and VE did not show positive relationship with the resistance to A. flavus.
基金This work was supported by the National Natural Science Foundation of China(grant numbers 52071281 and 51971197)the Natural Science Foundation of Hebei Province(grant numbers E2019203161,E2019203414 and E2020203081)Science and Technology Major project of Inner Mongolia(2020ZD0012).
文摘Hydrogen storage is a key link in hydrogen economy,where solid-state hydrogen storage is considered as the most promising approach because it can meet the requirement of high density and safety.Thereinto,magnesium-based materials(MgH_(2))are currently deemed as an attractive candidate due to the potentially high hydrogen storage density(7.6 wt%),however,the stable thermodynamics and slow kinetics limit the practical application.In this study,we design a ternary transition metal sulfide FeNi_(2)S_(4)with a hollow balloon structure as a catalyst of MgH_(2)to address the above issues by constructing a MgH_(2)/Mg_(2)NiH_(4)-MgS/Fe system.Notably,the dehydrogenation/hydrogenation of MgH_(2)has been significantly improved due to the synergistic catalysis of active species of Mg_(2)Ni/Mg_(2)NiH_(4),MgS and Fe originated from the MgH_(2)-FeNi_(2)S_(4)composite.The hydrogen absorption capacity of the MgH_(2)-FeNi_(2)S_(4)composite reaches to 4.02 wt%at 373 K for 1 h,a sharp contrast to the milled-MgH_(2)(0.67 wt%).In terms of dehydrogenation process,the initial dehydrogenation temperature of the composite is 80 K lower than that of the milled-MgH_(2),and the dehydrogenation activation energy decreases by 95.7 kJ·mol-1 compared with the milled-MgH_(2)(161.2 kJ·mol^(-1)).This method provides a new strategy for improving the dehydrogenation/hydrogenation performance of the MgH_(2)material.
基金financial support from the National Key Research and Development Program of China (No.2021YFB3502200)the National Natural Science Foundation of China (Grants Nos.52271202,51971040,52171101)+2 种基金the Shanghai Rising-Star Program (No.21QA1403200)supported by a start-up fund from Chongqing University (02110011044171)Liuchuang Program of Chongqing Municipality (cx2022038)。
文摘Magnesium-based energy materials, which combine promising energy-related functional properties with low cost, environmental compatibility and high availability, have been regarded as fascinating candidates for sustainable energy conversion and storage. In this review,we provide a timely summary on the recent progress in three types of important Mg-based energy materials, based on the fundamental strategies of composition and structure engineering. With regard to Mg-based materials for batteries, we systematically review and analyze different material systems, structure regulation strategies as well as the relevant performance in Mg-ion batteries(MIBs) and Mg-air batteries(MABs), covering cathodes, electrolytes, anodes for MIBs, and anodes for MABs;as to Mg-based hydrogen storage materials, we discuss how catalyst adding, composite, alloying and nanostructuring improve the kinetic and thermodynamic properties of de/hydrogenation reactions, and in particular, the impacts of composition and structure modification on hydrogen absorption/dissociation processes and free energy modification mechanism are focused;regarding Mg-based thermoelectric materials, the relations between composition/structure and electrical/thermal transport properties of Mg_(3)X_(2)(X = Sb, Bi), Mg_(2)X(X = Si, Ge, Sn) and Mg Ag Sb-based materials, together with the representative research progress of each material system, are summarized and discussed. Finally, by pointing out remaining challenges and providing possible solutions, this review aims to shed light on the directions and perspectives for practical applications of magnesium-based energy materials in the future.
基金supported by the National Natural Science Foundation of China (51801100,51771092,21975125,51801099)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJB430014)+1 种基金Six Talent Peaks Project in Jiangsu Province (2018,XNY-020)the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions。
文摘Two-dimensional Ti_(3)C_(2)T_(x) MXenes exposing different active facets are introduced into MgH_(2), and their catalytic effects are systematically investigated in depth through experimental and theoretical approaches. Excluding factors such as interlayer space, surface functional groups and experimental contingency, the exposed facets is considered to be the dominant factor for catalytic activity of Ti_(3)C_(2)T_(x) towards MgH_(2).More exposed edge facets of Ti_(3)C_(2)T_(x) displays higher catalytic activity than that with more exposed basal facets, which also leads to different rate-controlling steps of MgH_(2) in the de/hydrogenation process. The low work function, strong hydrogen affinity and high content of in situ metallic Ti for the edge facet contribute the high catalytic activity. This work will give insights into the structural design of two-dimensional Ti_(3)C_(2)T_(x) MXene used for enhancing the catalytic activity in various fields.
文摘An evident improvement on activation properties of hydrogen storage was made by sput- tering an amorphous coating of commercial Si on TiFe alloy.SEM observation revealed an obvious difference between the morphologies before and after hydrogen storage for TiFe alloy with or without amorphous Si coating.It is believed that this may be quite a developable hydrogen storage material.
基金Project supported by the National"973"Project (2004CB719503) and the Programfor New Century Excellent Talents in University
文摘Dynamic oxygen storage and release capability (OSC) measurement apparatus was designed to evaluate the OSC performance of ceria-based oxygen storage material. The optimum measurement condition was at a frequency of 0.1 Hz with the inlet gas-flow sequence CO (5S)→O2(5S)→CO→O2 and a flow rate of 300 ml·min^-1. Under this condition, similar regular square wave in the inlet and outlet of the reactor was obtained to guarantee the reliability of the dynamic OSC results. The dynamic OSC performance of the CeO2 and Ce0.67Zr0.33O2 mixed oxide prepared using the citric sol-gel method was studied at the optimum measurement condition with focus on both quantitative and qualitative analyses, The results reveal distinctly that Ce0.67Zr0.33O2 had better dynamic OSC performance because of its higher oxygen migration rate than CeO2. Under dynamic conditions, two CO2 production peaks occurred corresponding to the CO pulse and the O2 pulse, respectively, during the entire cycle. The intensity and ratio between the two CO2 productions were highly influenced by temperature and frequency indicating complex surface phenomena during the oxygen storage/release process, As a result, this set-up can be applied to the evaluation of ceria-based material on the OSC performance.
文摘Graphene, a single layer of graphite, has been one of the first real two dimensional (2D) materials isolated in 2004. Thus, graphene is becoming a cutting edge material that opens up new horizons to a whole family of 2D materials beyond the limited current applicability of graphene. The unique advantages of graphene and analogue 2D materials, such as atomic-scale thickness, high specific surface area, mechanically flexible robustness, superior storage capacity, endow them as high-performance electrodes lbr electrochemical energy storage devices. Although it is hard to say whether or not graphene and 2D materials will be implemented in future energy technologies, the recent achievements in this field demonstrate that their roles will be noticeable in the near future.
文摘In this paper, the mechanical and thermal properties of a sand-clay ceramic with additives coal bottom ash (CBA) waste from incinerator coal power plant are investigated to develop an alternative material for thermal energy storage (TES). Ceramic balls are developed at 1000°C and 1060°C using sintering or firing method. The obtained ceramics were compressed with a compression machine and thermally analyse using Decagon devise KD2 Pro thermal analyser. A muffle furnace was also used for thermal cycling at 610°C. It was found that the CBA increased the porosity, which resulted in the increase of the axial tensile strength reaching 3.5 MPa for sand-clay and ash ceramic. The ceramic balls with the required tensile strength for TES were selected. Their volumetric heat capacity, and thermal conductivity range respectively from 2.4075 MJ·m-3·°C-1 to 3.426 MJ·m-3·°C-1 and their thermal conductivity from 0.331 Wm-1·K-1, to 1.014 Wm-1·K-1 depending on sand origin, size and firing temperature. The selected formulas have good thermal stability because the most fragile specimens after 60 thermal cycles did not present any cracks. These properties allow envisioning the use of the ceramic balls developed as filler material for thermocline thermal energy storage (structured beds) in Concentrating Solar Power plants. And for other applications like solar cooker and solar dryer.