Internal diffusion of molecules in porous materials plays an important role in many chemical processes.However, the pore diffusion capacity of porous materials cannot be measured by conventional catalyst characterizat...Internal diffusion of molecules in porous materials plays an important role in many chemical processes.However, the pore diffusion capacity of porous materials cannot be measured by conventional catalyst characterization methods. In the present paper, a pore diffusion factor, the ratio of the diffusionconstriction factor to the pore tortuosity of the porous materials, was proposed to measure the diffusion ability of pores inside solid materials, and a method was proposed for measuring the diffusion factor using a well-defined and uniform pore size material as a reference. The diffusion factor was calculated based on the effective diffusion coefficients and the diffusion-constriction factor and pore tortuosity of the reference porous materials. The pore diffusion factor measurement can be performed at room temperature and atmospheric pressure. The pore diffusion factor of conventional porous materials was found to be much smaller than 1, indicating that there is a lot of room for improving the diffusion ability of the conventional catalysts and adsorbents, and could be significantly increased through adding small number of fibers into the conventional porous materials as template.展开更多
Manufacturing and agricultural industries use manual methods to count materials. This leads to low accuracy and inefficiency. This paper proposes a secondary counting method that combines main and differential countin...Manufacturing and agricultural industries use manual methods to count materials. This leads to low accuracy and inefficiency. This paper proposes a secondary counting method that combines main and differential counting. The area-fill identification algorithm is applied to mark the counted materials. To verify the effectiveness of the proposed counting algorithm, numbers of countings are conducted for different materials, such as the screws, hole gaskets, beans, jujube, etc. The results show that the counting accuracy reaches 98% for materials with size of 2—20 mm. The method has delivered a high-efficiency and high-accuracy automatic intelligent counting, with a wide range of application prospects and reference value.展开更多
基金supported by the National Nature Science Foundation of China (Grant No:91534120)。
文摘Internal diffusion of molecules in porous materials plays an important role in many chemical processes.However, the pore diffusion capacity of porous materials cannot be measured by conventional catalyst characterization methods. In the present paper, a pore diffusion factor, the ratio of the diffusionconstriction factor to the pore tortuosity of the porous materials, was proposed to measure the diffusion ability of pores inside solid materials, and a method was proposed for measuring the diffusion factor using a well-defined and uniform pore size material as a reference. The diffusion factor was calculated based on the effective diffusion coefficients and the diffusion-constriction factor and pore tortuosity of the reference porous materials. The pore diffusion factor measurement can be performed at room temperature and atmospheric pressure. The pore diffusion factor of conventional porous materials was found to be much smaller than 1, indicating that there is a lot of room for improving the diffusion ability of the conventional catalysts and adsorbents, and could be significantly increased through adding small number of fibers into the conventional porous materials as template.
基金supported by the Special Fund of Science and Technology Innovation Strategy of Guangdong Province in 2021 (No.pdjh2021a0284)the National Natural Science Foundation of China (No.52105436)+1 种基金the Guangzhou Science and Technology Plan (No.202102080184)the Guangdong Education Department Project (No.2019KTSCX086)。
文摘Manufacturing and agricultural industries use manual methods to count materials. This leads to low accuracy and inefficiency. This paper proposes a secondary counting method that combines main and differential counting. The area-fill identification algorithm is applied to mark the counted materials. To verify the effectiveness of the proposed counting algorithm, numbers of countings are conducted for different materials, such as the screws, hole gaskets, beans, jujube, etc. The results show that the counting accuracy reaches 98% for materials with size of 2—20 mm. The method has delivered a high-efficiency and high-accuracy automatic intelligent counting, with a wide range of application prospects and reference value.