Silicon photonics is an emerging competitive solution for next-generation scalable data communications in different application areas as high-speed data communication is constrained by electrical interconnects. Optica...Silicon photonics is an emerging competitive solution for next-generation scalable data communications in different application areas as high-speed data communication is constrained by electrical interconnects. Optical interconnects based on silicon photonics can be used in intra/inter-chip interconnects, board-to-board interconnects, short-reach communications in datacenters, supercomputers and long-haul optical transmissions. In this paper, we present an overview of recent progress in silicon optoelectronic devices and optoelectronic integrated circuits (OEICs) based on a complementary metal-oxide-semiconductor-compatible process, and focus on our research contributions. The silicon optoelectronic devices and OEICs show good characteristics, which are expected to benefit several application domains, including communication, sensing, computing and nonlinear systems.展开更多
The heterogeneous integration of photonic integrated circuits(PICs)with a diverse range of optoelectronic materials has emerged as a transformative approach,propelling photonic chips toward larger scales,superior perf...The heterogeneous integration of photonic integrated circuits(PICs)with a diverse range of optoelectronic materials has emerged as a transformative approach,propelling photonic chips toward larger scales,superior performance,and advanced integration levels.Notably,two-dimensional(2D)materials,such as graphene,transition metal dichalcogenides(TMDCs),black phosphorus(BP),and hexagonal boron nitride(hBN),exhibit remarkable device performance and integration capabilities,offering promising potential for large-scale implementation in PICs.In this paper,we first present a comprehensive review of recent progress,systematically categorizing the integration of photonic circuits with 2D materials based on their types while also emphasizing their unique advantages.Then,we discuss the integration approaches of 2D materials with PICs.We also summarize the technical challenges in the heterogeneous integration of 2D materials in photonics and envision their immense potential for future applications in PICs.展开更多
With the unprecedented increasing demand for extremely fast processing speed and huge data capacity,traditional silicon-based information technology is becoming saturated due to the encountered bottle-necks of Moore...With the unprecedented increasing demand for extremely fast processing speed and huge data capacity,traditional silicon-based information technology is becoming saturated due to the encountered bottle-necks of Moore's Law.New material systems and new device architectures are considered promising strategies for this challenge.Two-dimensional(2D)materials are layered materials and garnered persistent attention in recent years owing to their advantages in ultrathin body,strong light-matter interaction,flexible integration,and ultrabroad operation wavelength range.To this end,the integra-tion of 2D materials into silicon-based platforms opens a new path for silicon photonic integration.In this work,a comprehensive review is given of the recent signs of progress related to 2D material inte-grated optoelectronic devices and their potential applications in silicon photonics.Firstly,the basic op-tical properties of 2D materials and heterostructures are summarized in the first part.Then,the state-of-the-art three typical 2D optoelectronic devices for silicon photonic applications are reviewed in detail.Finally,the perspective and challenges for the aim of 3D monolithic heterogeneous integration of these 2D optoelectronic devices are discussed.展开更多
As we enter the post-Moore era,heterogeneous optoelectronic integrated circuits(OEICs)are attracting significant attention as an alternative approach to scaling to smaller-sized transistors.Two-dimensional(2D)material...As we enter the post-Moore era,heterogeneous optoelectronic integrated circuits(OEICs)are attracting significant attention as an alternative approach to scaling to smaller-sized transistors.Two-dimensional(2D)materials,offering a range of intriguing optoelectronic properties as semiconductors,semimetals,and insulators,provide great potential for developing nextgeneration heterogeneous OEICs.For instance,Fermi levels of 2D materials can be tuned by applying electrical voltages,while their atomically thin geometries are inherently suited for the fabrication of planar devices without suffering from lattice mismatch.Since the first graphene-on-silicon OEICs were demonstrated in 2011,2D-material heterogeneous OEICs have significantly progressed.To date,researchers have a better understanding of the importance of interface states on the optical properties of chip-integrated 2D materials.Moreover,there has been impressive progress towards the use of 2D materials for waveguide-integrated lasers,modulators,and photodetectors.In this review,we summarize the history,status,and trend of integrated optoelectronics with 2D materials.展开更多
A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit ...A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.展开更多
Serving as the electrical to optical converter,the on-chip silicon light source is an indispensable component of silicon photonic technologies and has long been pursued.Here,we briefly review the history and recent pr...Serving as the electrical to optical converter,the on-chip silicon light source is an indispensable component of silicon photonic technologies and has long been pursued.Here,we briefly review the history and recent progress of a few promising contenders for on-chip light sources in terms of operating wavelength,pump condition,power consumption,and fabrication process.Additionally,the performance of each contender is also assessed with respect to thermal stability,which is a crucial parameter to consider in complex optoelectronic integrated circuits(OEICs)and optical interconnections.Currently,III-V-based silicon(Si)lasers formed via bonding techniques demonstrate the best performance and display the best opportunity for commercial usage in the near future.However,in the long term,direct hetero-epitaxial growth of III–V materials on Si seems more promising for low-cost,high-yield fabrication.The demonstration of high-performance quantum dot(QD)lasers monolithically grown on Si strongly forecasts its feasibility and enormous potential for on-chip lasers.The superior temperature-insensitive characteristics of the QD laser promote this design in large-scale high-density OEICs.The Germanium(Ge)-on-Si laser is also competitive for large-scale monolithic integration in the future.Compared with a III-V-based Si laser,the biggest potential advantage of a Ge-on-Si laser lies in its material and processing compatibility with Si technology.Additionally,the versatility of Ge facilitates photon emission,modulation,and detection simultaneously with a simple process complexity and low cost.展开更多
基金supported by the National Basic Research Program of China(No.2011CBA00608)the National Natural Science Foundation of China(Nos.61178051,61321063,61335010,61178048,61275169)the National High Technology Research and Development Program of China(Nos.2013AA013602,2013AA031903,2013AA032204)
文摘Silicon photonics is an emerging competitive solution for next-generation scalable data communications in different application areas as high-speed data communication is constrained by electrical interconnects. Optical interconnects based on silicon photonics can be used in intra/inter-chip interconnects, board-to-board interconnects, short-reach communications in datacenters, supercomputers and long-haul optical transmissions. In this paper, we present an overview of recent progress in silicon optoelectronic devices and optoelectronic integrated circuits (OEICs) based on a complementary metal-oxide-semiconductor-compatible process, and focus on our research contributions. The silicon optoelectronic devices and OEICs show good characteristics, which are expected to benefit several application domains, including communication, sensing, computing and nonlinear systems.
文摘The heterogeneous integration of photonic integrated circuits(PICs)with a diverse range of optoelectronic materials has emerged as a transformative approach,propelling photonic chips toward larger scales,superior performance,and advanced integration levels.Notably,two-dimensional(2D)materials,such as graphene,transition metal dichalcogenides(TMDCs),black phosphorus(BP),and hexagonal boron nitride(hBN),exhibit remarkable device performance and integration capabilities,offering promising potential for large-scale implementation in PICs.In this paper,we first present a comprehensive review of recent progress,systematically categorizing the integration of photonic circuits with 2D materials based on their types while also emphasizing their unique advantages.Then,we discuss the integration approaches of 2D materials with PICs.We also summarize the technical challenges in the heterogeneous integration of 2D materials in photonics and envision their immense potential for future applications in PICs.
基金supported by the National Natural Science Foundation of China(Nos.52221001,U19A2090,62090035,52172140,51902098,62175061)the Key Program of the Hunan Provincial Science and Technology Department(Nos.2019XK2001,2020XK2001)+3 种基金the International Science and Technology Innovation Cooperation Base of Hunan Province(No.2018WK4004)the Outstanding Scholarship Program of Hunan Province(No.2021JJ10021)the Science and Technology Innovation Program of Hunan Province(No.2021RC3061)the Natural Science Foundation of Hunan Province(Nos.2022JJ30167,2021JJ20016).
文摘With the unprecedented increasing demand for extremely fast processing speed and huge data capacity,traditional silicon-based information technology is becoming saturated due to the encountered bottle-necks of Moore's Law.New material systems and new device architectures are considered promising strategies for this challenge.Two-dimensional(2D)materials are layered materials and garnered persistent attention in recent years owing to their advantages in ultrathin body,strong light-matter interaction,flexible integration,and ultrabroad operation wavelength range.To this end,the integra-tion of 2D materials into silicon-based platforms opens a new path for silicon photonic integration.In this work,a comprehensive review is given of the recent signs of progress related to 2D material inte-grated optoelectronic devices and their potential applications in silicon photonics.Firstly,the basic op-tical properties of 2D materials and heterostructures are summarized in the first part.Then,the state-of-the-art three typical 2D optoelectronic devices for silicon photonic applications are reviewed in detail.Finally,the perspective and challenges for the aim of 3D monolithic heterogeneous integration of these 2D optoelectronic devices are discussed.
基金supported by the National Natural Science Foundation of China(62161160335,62175179,61922034,61805164,61805175)the Science and Technology Plan Project of Shenzhen(JCYJ20190808120801661)Hong Kong Research Grants Council(RGC)Research Grants(N_CUHK423/21)。
文摘As we enter the post-Moore era,heterogeneous optoelectronic integrated circuits(OEICs)are attracting significant attention as an alternative approach to scaling to smaller-sized transistors.Two-dimensional(2D)materials,offering a range of intriguing optoelectronic properties as semiconductors,semimetals,and insulators,provide great potential for developing nextgeneration heterogeneous OEICs.For instance,Fermi levels of 2D materials can be tuned by applying electrical voltages,while their atomically thin geometries are inherently suited for the fabrication of planar devices without suffering from lattice mismatch.Since the first graphene-on-silicon OEICs were demonstrated in 2011,2D-material heterogeneous OEICs have significantly progressed.To date,researchers have a better understanding of the importance of interface states on the optical properties of chip-integrated 2D materials.Moreover,there has been impressive progress towards the use of 2D materials for waveguide-integrated lasers,modulators,and photodetectors.In this review,we summarize the history,status,and trend of integrated optoelectronics with 2D materials.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60536030,61036002,60776024,60877035 and 61036009)National High Technology Research and Development Program of China(Grant Nos.2007AA04Z329 and 2007AA04Z254)
文摘A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.
基金This work was partially supported by the Major International Cooperation and Exchange Program of the National Natural Science Foundation of China under Grant 61120106012the Peking University 985 Startup Fund.
文摘Serving as the electrical to optical converter,the on-chip silicon light source is an indispensable component of silicon photonic technologies and has long been pursued.Here,we briefly review the history and recent progress of a few promising contenders for on-chip light sources in terms of operating wavelength,pump condition,power consumption,and fabrication process.Additionally,the performance of each contender is also assessed with respect to thermal stability,which is a crucial parameter to consider in complex optoelectronic integrated circuits(OEICs)and optical interconnections.Currently,III-V-based silicon(Si)lasers formed via bonding techniques demonstrate the best performance and display the best opportunity for commercial usage in the near future.However,in the long term,direct hetero-epitaxial growth of III–V materials on Si seems more promising for low-cost,high-yield fabrication.The demonstration of high-performance quantum dot(QD)lasers monolithically grown on Si strongly forecasts its feasibility and enormous potential for on-chip lasers.The superior temperature-insensitive characteristics of the QD laser promote this design in large-scale high-density OEICs.The Germanium(Ge)-on-Si laser is also competitive for large-scale monolithic integration in the future.Compared with a III-V-based Si laser,the biggest potential advantage of a Ge-on-Si laser lies in its material and processing compatibility with Si technology.Additionally,the versatility of Ge facilitates photon emission,modulation,and detection simultaneously with a simple process complexity and low cost.
基金The National Natural Science Foundation of China(No.61205060)the Natural Science Foundation of Fujian Province of China(No.2011J01361)the Key Project of Science and Technology of Fujian Province of China(No.2013H0047)