We are pleased to introduce a feature issue on photonics based on two-dimensional(2D)materials.Enlightened by the unique optical and electronic properties of graphene,2D layered materials have been extensively studied...We are pleased to introduce a feature issue on photonics based on two-dimensional(2D)materials.Enlightened by the unique optical and electronic properties of graphene,2D layered materials have been extensively studied in recent years driven by their promising applications for a large展开更多
The admittance features representing the physical attributes are used as the in termediates to extract the materialattributesrelated impact sound features of ribbed plates. Firstly, the admittance feature representati...The admittance features representing the physical attributes are used as the in termediates to extract the materialattributesrelated impact sound features of ribbed plates. Firstly, the admittance feature representations of metal ribbed plates attributes are obtained and the relationship between the admittance features and the impact sound features are established via correlation analysis method. Then, materialattributesrelated impact sound features are obtained indirectly. Finally, the performances of different sound features for the material recognition of ribbedmetal plates are verified through the Support Vector Machine classifier. The results indicate that the obtained four sets of features can effectively identify the materials of the metal ribbed plates, while the accuracy of a single feature depends on the separable degree of the corresponding material attribute. And the features extracted based on admittance functions have higher average accuracy than that of timbre features. Therefore, the proposed sound feature extraction method based on admittance features is valid, and the extracted sound features can effectively reflect the physical attributes.展开更多
Topology optimization was developed as an advanced structural design methodology to generate innovative lightweight and high-performance configurations that are difficult to obtain with conventional ideas.Additive man...Topology optimization was developed as an advanced structural design methodology to generate innovative lightweight and high-performance configurations that are difficult to obtain with conventional ideas.Additive manufacturing is an advanced manufacturing technique building asdesigned structures via layer-by-layer joining material,providing an alternative pattern for complex components.The integration of topology optimization and additive manufacturing can make the most of their advantages and potentials,and has wide application prospects in modern manufacturing.This article reviews the main content and applications of the research on the integration of topology optimization and additive manufacturing in recent years,including multi-scale or hierarchical structural optimization design and topology optimization considering additive manufacturing constraints.Meanwhile,some challenges of structural design approaches for additive manufacturing are discussed,such as the performance characterization and scale effects of additively manufactured lattice structures,the anisotropy and fatigue performance of additively manufactured material,and additively manufactured functionally graded material issues,etc.It is shown that in the research of topology optimization for additive manufacturing,the integration of material,structure,process and performance is important to pursue high-performance,multi-functional and lightweight production.This article provides a reference for further related research and aerospace applications.展开更多
文摘We are pleased to introduce a feature issue on photonics based on two-dimensional(2D)materials.Enlightened by the unique optical and electronic properties of graphene,2D layered materials have been extensively studied in recent years driven by their promising applications for a large
基金supported by the National Natural Science Foundation of China(11574249)the Aeronautical Science Foundation of China(20131553018)
文摘The admittance features representing the physical attributes are used as the in termediates to extract the materialattributesrelated impact sound features of ribbed plates. Firstly, the admittance feature representations of metal ribbed plates attributes are obtained and the relationship between the admittance features and the impact sound features are established via correlation analysis method. Then, materialattributesrelated impact sound features are obtained indirectly. Finally, the performances of different sound features for the material recognition of ribbedmetal plates are verified through the Support Vector Machine classifier. The results indicate that the obtained four sets of features can effectively identify the materials of the metal ribbed plates, while the accuracy of a single feature depends on the separable degree of the corresponding material attribute. And the features extracted based on admittance functions have higher average accuracy than that of timbre features. Therefore, the proposed sound feature extraction method based on admittance features is valid, and the extracted sound features can effectively reflect the physical attributes.
基金supported by National Key Research and Development Program(2017YFB1102800)Key Project of NSFC(51790171,51761145111)NSFC for Excellent Young Scholars(11722219)。
文摘Topology optimization was developed as an advanced structural design methodology to generate innovative lightweight and high-performance configurations that are difficult to obtain with conventional ideas.Additive manufacturing is an advanced manufacturing technique building asdesigned structures via layer-by-layer joining material,providing an alternative pattern for complex components.The integration of topology optimization and additive manufacturing can make the most of their advantages and potentials,and has wide application prospects in modern manufacturing.This article reviews the main content and applications of the research on the integration of topology optimization and additive manufacturing in recent years,including multi-scale or hierarchical structural optimization design and topology optimization considering additive manufacturing constraints.Meanwhile,some challenges of structural design approaches for additive manufacturing are discussed,such as the performance characterization and scale effects of additively manufactured lattice structures,the anisotropy and fatigue performance of additively manufactured material,and additively manufactured functionally graded material issues,etc.It is shown that in the research of topology optimization for additive manufacturing,the integration of material,structure,process and performance is important to pursue high-performance,multi-functional and lightweight production.This article provides a reference for further related research and aerospace applications.