General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neu...General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme.展开更多
提出一种基于遗传算法和低阶广义记忆多项式实值神经网络的射频功率放大器数字预失真方法。该方法将遗传算法优化的低阶广义记忆多项式模型与神经网络模型进行级联来增强校正模型与功放失真的匹配程度。它不仅可以提升模型的校正能力,...提出一种基于遗传算法和低阶广义记忆多项式实值神经网络的射频功率放大器数字预失真方法。该方法将遗传算法优化的低阶广义记忆多项式模型与神经网络模型进行级联来增强校正模型与功放失真的匹配程度。它不仅可以提升模型的校正能力,同时可以加快网络的收敛速度。采用60MHz的三载波LTE信号进行实验,通过与实值延时线神经网络模型对比,在收敛速度上有显著提升,同时在邻道功率泄露ACLR指标上有6 d B左右改善。展开更多
基金Tianjin Natural Science Foundation !983602011National 863/CIMS Research Foundation !863-511-945-010
文摘General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme.
文摘提出一种基于遗传算法和低阶广义记忆多项式实值神经网络的射频功率放大器数字预失真方法。该方法将遗传算法优化的低阶广义记忆多项式模型与神经网络模型进行级联来增强校正模型与功放失真的匹配程度。它不仅可以提升模型的校正能力,同时可以加快网络的收敛速度。采用60MHz的三载波LTE信号进行实验,通过与实值延时线神经网络模型对比,在收敛速度上有显著提升,同时在邻道功率泄露ACLR指标上有6 d B左右改善。