期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Nonlinear instability suppression of closed-loop pilot-vehicle system with rate-limiting actuator based on anti-windup compensation
1
作者 Liang Qu Yinghui Li +1 位作者 Haojun Xu Qimeng Cao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第4期892-899,共8页
To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensati... To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensation method to avoid category II PIOs is investigated. Firstly, the AW compensation method originally used for controlling input magnitude limited system is introduced, then this method is extended for controlling input rate-limiting system through a circle criterion theorem. Secondly, the establishment of the AW compensator is transformed into the solving of linear matrix inequalities. Finally, an AW compensator establishment algorithm for the closed-loop pilot-vehicle system with the rate-limiting actuator is obtained. The effectiveness of the AW compensation method to avoid category II PIOs is validated by time-domain simulations,and compared with rate-limited feedback(RLF) command rate compensation method. The results show that the AW compensation method can effectively suppress category II PIOs and maintain the nominal performance when the closed-loop pilot-vehicle system is normal. Unlike the command rate compensator which works upon system uninterruptedly, the AW compensation method affects the closed-loop pilot-vehicle system only when the rate-limiting of actuator is activated, so it is a novel PIO avoidance method. 展开更多
关键词 rate-limiting pilot induced oscillation(PIO) antiwindup(AW) compensation closed-loop pilot-vehicle system linear matrix inequality command rate compensation
下载PDF
Transformation Method of Exterior Orientation Angular Elements Obtained via Position and Orientation System Under Gauss-Kruger Projection Coordinate System
2
作者 YUAN Xiuxiao ZHANG Xueping FU Jianhong 《Geo-Spatial Information Science》 2010年第3期157-165,共9页
Data obtained via airborne position and orientation system (POS) is in WGS 84 global geocentric reference frame, while the national coordinate reference system for topographic mapping in China is generally Gauss-Kru... Data obtained via airborne position and orientation system (POS) is in WGS 84 global geocentric reference frame, while the national coordinate reference system for topographic mapping in China is generally Gauss-Kruger projection coordinate system. Therefore, data obtained via a POS must be transformed to national coordinate system. Owing to the effects of earth curvature and me- ridian deviation, there are some errors in the process of angle transformation from roll, pitch, and heading (φ,θ,ψ) obtained directly via a POS to the attitude angles of images (φ,ω,κ) needed in photogrammetry. On the basis of effect theories of earth curvature and meridian deviation on exterior orientation angular elements of images, a method using a compensation matrix to correct the transformation errors from attitude angles obtained via the POS to exterior orientation angular elements of images is proposed in this paper. Moreover, the rigorous formula of the compensation matrix is deduced. Two sets of actual data obtained via a POS AV 510, which are different in scale and terrain, are selected and used to perform experiments. The empirical results not only indicate that the compensation matrix proposed in this paper is correct and practical but also show that transformation accuracy of exterior orientation angular elements obtained via the POS based on compensation matrix is relevant to the selection of vertical axis (a projection of central meridian) of Gauss-Kruger projection coordinate system; the proper vertical axis should be the Gauss-Kruger projection of the central meridian of projection zone in which the survey area locates. However, the transformation accuracy of exterior orientation angular elements is irrelevant to the choice of origin of coordinate system; it is appropriate that the origin of coordinate system locates at the center point of the survey area. Moreover, transformation accuracy of exterior orientation angular elements achieved based on the compensa- tion matrix deduced in this paper is higher than that obtained via the existing POS processing software. 展开更多
关键词 position and orientation system (POS) exterior orientation elements of image earth curvature meridian deviation compensation matrix
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部