Some elements normally occur at trace levels while the majority of natural geological materials may be exceedingly enriched in some special cases, such as the Bayan Obo ore deposit where REE and Nb are extremely enric...Some elements normally occur at trace levels while the majority of natural geological materials may be exceedingly enriched in some special cases, such as the Bayan Obo ore deposit where REE and Nb are extremely enriched. These elements may not be removed completely during purification. Therefore, matrix effects will be caused during stable isotope ratio measurement in the MC-ICP-MS. Experiments have shown that the established methods of chromatographic separation of Cu, Fe, and Zn using AG MP-1 Anion Exchange Resin cannot make ef-fective separation of Nb, W, and Cu from Fe using 20 mL 6 M HCl. It is also observed that the elution curves of W and Cu overlap at working conditions and thus W is present in measurable amounts in some sample solutions. Matrix effects in the MC-ICP-MS induced by Nb, W, and Cu during Fe isotope ratio measurements and by W during Cu isotope ratio measurements were thus investigated by examining their changes in delta values between doped and undoped standards. The results show that the effects of the matrix elements Nb, W, or Cu on Fe isotope ratio measurements are minimal in the case of m(Nb)/m(Fe)<0.005, m(W)/m(Fe)<0.01, or m(Cu)/m(Fe)<0.6. This finding, combined with the extremely low levels of W and Cu, and the fact that nearly 90% of Nb can be removed during purification, demonstrates that the methods of chromatographic separation of Fe established before are suitable for Bayan Obo ore samples and that the methods can be simplified when Cu elution is unnecessary. The effects of the matrix element W on Cu isotope determinations are minimal in the case of m(W)/m(Cu)<0.7. Therefore, W exerts no significant effect on the measurements of Cu isotopes for the majority of natural geological materials.展开更多
Objective With the development of analytic technologies, in-situ dating on U-bearing oxide minerals (e.g., cassiterite, rutile and baddeleyite) has been widely used in geological chronological researches and has at...Objective With the development of analytic technologies, in-situ dating on U-bearing oxide minerals (e.g., cassiterite, rutile and baddeleyite) has been widely used in geological chronological researches and has attracted remarkable attention to explore evolution of the earth and obtain age information of various geological processes. Matrix effect related studies are especially important during in-situ U- Pb dating based on Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC- ICPMS). However, to our knowledge, only few thorough and systematical matrix effect study of U-bearing oxide minerals has been reported. In this study, we systematically analyzed the matrix effect of U-bearing oxide minerals in order to take place the standards which are difficult to prepare with available standards.展开更多
Employing matrix converter (MC) as driving mode, the strategy of model predictive torque control (MPTC) is proposed for three phase permanent magnet synchronous motor (PMSM) system. MC is applied instead of conv...Employing matrix converter (MC) as driving mode, the strategy of model predictive torque control (MPTC) is proposed for three phase permanent magnet synchronous motor (PMSM) system. MC is applied instead of conventional AC DC AC converter to increase the power factor (PF) of the system input side. MPTC is used to select optimal voltage space vector to enable the system to have satisfactory torque and flux control effect. The resultant MPTC strategy not only makes the MC fed PMSM system operate reliably and have perfect control performance, but also makes the PF of the system input side be 1. Compared with direct torque control (DTC), the proposed MPTC strategy guarantees that MC fed PMSM has better command following characteristics in the presence of variation of load torque and tracking reference speed. Simulation results verify the feasibility and effectiveness of the proposed strategy.展开更多
Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermin...Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermined equations based on sparsity prior in singular values set of the unknown matrix,which also calls low-rank prior of the unknown matrix.This paper firstly introduces basic concept of matrix completion,analyses the matrix suitably used in matrix completion,and shows that such matrix should satisfy two conditions:low rank and incoherence property.Then the paper provides three reconstruction algorithms commonly used in matrix completion:singular value thresholding algorithm,singular value projection,and atomic decomposition for minimum rank approximation,puts forward their shortcoming to know the rank of original matrix.The Projected Gradient Descent based on Soft Thresholding(STPGD),proposed in this paper predicts the rank of unknown matrix using soft thresholding,and iteratives based on projected gradient descent,thus it could estimate the rank of unknown matrix exactly with low computational complexity,this is verified by numerical experiments.We also analyze the convergence and computational complexity of the STPGD algorithm,point out this algorithm is guaranteed to converge,and analyse the number of iterations needed to reach reconstruction error.Compared the computational complexity of the STPGD algorithm to other algorithms,we draw the conclusion that the STPGD algorithm not only reduces the computational complexity,but also improves the precision of the reconstruction solution.展开更多
This project proposes a novel dual-input matrix converter (DIMC) which is used to integrate the output of the wind energy to a power grid. The proposed matrix converter is developed based on the traditional indirect m...This project proposes a novel dual-input matrix converter (DIMC) which is used to integrate the output of the wind energy to a power grid. The proposed matrix converter is developed based on the traditional indirect matrix converter under reverse power flow operation mode, but with its six-switch voltage source converter replaced by a nine-switch configuration followed by the current source inverter (CSI). Matrix electric power conversion topologies and their switch functions are flexible and are used for specific applications. With the additional three switches, the proposed DIMC can provide six input terminals, which make it possible to integrate two independent AC sources from two independent wind turbines into a single grid tied power electronics interface. Commanded currents can be extracted from the two input sources to the grid. The proposed PI control and modulation schemes guaranteed sinusoidal input and output waveforms as well as reduced THD. The simulation results are provided to validate the effectiveness of the proposed control and modulation schemes for the proposed converter.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant No. 40973037)the MLR Public Benefit Research Foundation of China (Grant No.200911043-14)
文摘Some elements normally occur at trace levels while the majority of natural geological materials may be exceedingly enriched in some special cases, such as the Bayan Obo ore deposit where REE and Nb are extremely enriched. These elements may not be removed completely during purification. Therefore, matrix effects will be caused during stable isotope ratio measurement in the MC-ICP-MS. Experiments have shown that the established methods of chromatographic separation of Cu, Fe, and Zn using AG MP-1 Anion Exchange Resin cannot make ef-fective separation of Nb, W, and Cu from Fe using 20 mL 6 M HCl. It is also observed that the elution curves of W and Cu overlap at working conditions and thus W is present in measurable amounts in some sample solutions. Matrix effects in the MC-ICP-MS induced by Nb, W, and Cu during Fe isotope ratio measurements and by W during Cu isotope ratio measurements were thus investigated by examining their changes in delta values between doped and undoped standards. The results show that the effects of the matrix elements Nb, W, or Cu on Fe isotope ratio measurements are minimal in the case of m(Nb)/m(Fe)<0.005, m(W)/m(Fe)<0.01, or m(Cu)/m(Fe)<0.6. This finding, combined with the extremely low levels of W and Cu, and the fact that nearly 90% of Nb can be removed during purification, demonstrates that the methods of chromatographic separation of Fe established before are suitable for Bayan Obo ore samples and that the methods can be simplified when Cu elution is unnecessary. The effects of the matrix element W on Cu isotope determinations are minimal in the case of m(W)/m(Cu)<0.7. Therefore, W exerts no significant effect on the measurements of Cu isotopes for the majority of natural geological materials.
基金financially supported by the National Natural Science Foundation of China(grants No.41503052 and 41373053)the National Science and Technology Infrastructure(grant No.DDK14-39)
文摘Objective With the development of analytic technologies, in-situ dating on U-bearing oxide minerals (e.g., cassiterite, rutile and baddeleyite) has been widely used in geological chronological researches and has attracted remarkable attention to explore evolution of the earth and obtain age information of various geological processes. Matrix effect related studies are especially important during in-situ U- Pb dating based on Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC- ICPMS). However, to our knowledge, only few thorough and systematical matrix effect study of U-bearing oxide minerals has been reported. In this study, we systematically analyzed the matrix effect of U-bearing oxide minerals in order to take place the standards which are difficult to prepare with available standards.
基金National Natural Science Foundation of China(No.61463025)Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University(No.201701)
文摘Employing matrix converter (MC) as driving mode, the strategy of model predictive torque control (MPTC) is proposed for three phase permanent magnet synchronous motor (PMSM) system. MC is applied instead of conventional AC DC AC converter to increase the power factor (PF) of the system input side. MPTC is used to select optimal voltage space vector to enable the system to have satisfactory torque and flux control effect. The resultant MPTC strategy not only makes the MC fed PMSM system operate reliably and have perfect control performance, but also makes the PF of the system input side be 1. Compared with direct torque control (DTC), the proposed MPTC strategy guarantees that MC fed PMSM has better command following characteristics in the presence of variation of load torque and tracking reference speed. Simulation results verify the feasibility and effectiveness of the proposed strategy.
基金Supported by the National Natural Science Foundation ofChina(No.61271240)Jiangsu Province Natural Science Fund Project(No.BK2010077)Subject of Twelfth Five Years Plans in Jiangsu Second Normal University(No.417103)
文摘Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermined equations based on sparsity prior in singular values set of the unknown matrix,which also calls low-rank prior of the unknown matrix.This paper firstly introduces basic concept of matrix completion,analyses the matrix suitably used in matrix completion,and shows that such matrix should satisfy two conditions:low rank and incoherence property.Then the paper provides three reconstruction algorithms commonly used in matrix completion:singular value thresholding algorithm,singular value projection,and atomic decomposition for minimum rank approximation,puts forward their shortcoming to know the rank of original matrix.The Projected Gradient Descent based on Soft Thresholding(STPGD),proposed in this paper predicts the rank of unknown matrix using soft thresholding,and iteratives based on projected gradient descent,thus it could estimate the rank of unknown matrix exactly with low computational complexity,this is verified by numerical experiments.We also analyze the convergence and computational complexity of the STPGD algorithm,point out this algorithm is guaranteed to converge,and analyse the number of iterations needed to reach reconstruction error.Compared the computational complexity of the STPGD algorithm to other algorithms,we draw the conclusion that the STPGD algorithm not only reduces the computational complexity,but also improves the precision of the reconstruction solution.
文摘This project proposes a novel dual-input matrix converter (DIMC) which is used to integrate the output of the wind energy to a power grid. The proposed matrix converter is developed based on the traditional indirect matrix converter under reverse power flow operation mode, but with its six-switch voltage source converter replaced by a nine-switch configuration followed by the current source inverter (CSI). Matrix electric power conversion topologies and their switch functions are flexible and are used for specific applications. With the additional three switches, the proposed DIMC can provide six input terminals, which make it possible to integrate two independent AC sources from two independent wind turbines into a single grid tied power electronics interface. Commanded currents can be extracted from the two input sources to the grid. The proposed PI control and modulation schemes guaranteed sinusoidal input and output waveforms as well as reduced THD. The simulation results are provided to validate the effectiveness of the proposed control and modulation schemes for the proposed converter.