For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then ...For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then adding amino-functionalized UiO-66-NH_(2)(Am-UiO-66-NH_(2)).Aminofunctionalization of UiO-66 was accomplished by melamine,followed by an amidation reaction to immobilize Am-UiO-66-NH_(2),which was immobilized on the surface of the membrane as well as in the pore channels,which enhanced the hydrophilicity of the membrane surface while increasing the negative potential of the membrane surface.This nanoparticle-loaded ultrafiltration membrane has good permeation performance,with a pure water flux of up to 482.3 L·m^(-2)·h^(-1) for C-SPAEKS/AmUiO-66-NH_(2) and a retention rate of up to 98.7%for bovine serum albumin(BSA)-contaminated solutions.Meanwhile,after several hydrophilic modifications,the flux recovery of BSA contaminants by this series of membranes increased from 56.2%to 80.55%of pure membranes.The results of ultra-filtration flux time tests performed at room temperature showed that the series of ultrafiltration membranes remained relatively stable over a test time of 300 min.Thus,the newly developed mixed matrix membrane showed potential for high efficiency and stability in wastewater treatment containing bovine serum proteins.展开更多
Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,s...Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,such as the presence of interfacial voids,hardening of polymer chains,and blockage of micropores by polymers between common MMMsfillers and the polymer matrix,currently limit the gas sep-aration performance of MMMs.Ternary phase MMMs(consisting of afiller,an additive,and a matrix)made by adding a third compound,usually functionalized additives,can overcome the structural problems of binary phase MMMs and positively impact membrane separation performance.This review introduces the structure and fabrication processes for ternary MMMs,categorizes various nanofillers and the third component,and summarizes and analyzes in detail the CO_(2) separation performance of newly developed ternary MMMs based on both rubbery and glassy polymers.Based on this separation data,the challenges of ternary MMMs are also discussed.Finally,future directions for ternary MMMs are proposed.展开更多
We study constraints on neutrino properties for a class of bi-large mixing See-Saw mass matrices with texture zeros and with the related Dirac neutrino mass matrix to be proportional to a diagonal matrix of the form d...We study constraints on neutrino properties for a class of bi-large mixing See-Saw mass matrices with texture zeros and with the related Dirac neutrino mass matrix to be proportional to a diagonal matrix of the form diag (e, 1, 1). Texture zeros may occur in the light (class a)) or in the heavy (class b)) neutrino mass matrices. Each of these two classes has 5 different forms which can produce non-trivial three generation mixing with at least one texture zero. We tind that two types of texture zero mass matrices in both class a and class b can be consistent with present data on neutrino masses and mixing. None of the neutrinos can have zero masses and the lightest of the light neutrinos has a mass larger than about 0.046 eV for class a and 0.0027 eV for class b. In these models although the CK.M CP violating phase vanishes, the non-zero Majorana phases can exist and can play an important role in producing the observed baryon asymmetry in our universe through leptogenesis mechanism. The requirement of producing the observed baryon asymmetry can further distinguish different models and also restrict the See-Saw scale to be in the range of 10^12- 10^15 GeV. We also discuss RG effects on V^13.展开更多
Under the underdetermined blind sources separation(UBSS) circumstance,it is difficult to estimate the mixing matrix with high-precision because of unknown sparsity of signals.The mixing matrix estimation is proposed b...Under the underdetermined blind sources separation(UBSS) circumstance,it is difficult to estimate the mixing matrix with high-precision because of unknown sparsity of signals.The mixing matrix estimation is proposed based on linear aggregation degree of signal scatter plot without knowing sparsity,and the linear aggregation degree evaluation of observed signals is presented which obeys generalized Gaussian distribution(GGD).Both the GGD shape parameter and the signals' correlation features affect the observation signals sparsity and further affected the directionality of time-frequency scatter plot.So a new mixing matrix estimation method is proposed for different sparsity degrees,which especially focuses on unclear directionality of scatter plot and weak linear aggregation degree.Firstly,the direction of coefficient scatter plot by time-frequency transform is improved and then the single source coefficients in the case of weak linear clustering is processed finally the improved K-means clustering is applied to achieve the estimation of mixing matrix.The proposed algorithm reduces the requirements of signals sparsity and independence,and the mixing matrix can be estimated with high accuracy.The simulation results show the feasibility and effectiveness of the algorithm.展开更多
Efficiently enriching low-concentration CH4 is pivotal for enhancing the utilization of unconventional energy sources and mitigating greenhouse gas emissions.This study focuses on modifying the overall performance of ...Efficiently enriching low-concentration CH4 is pivotal for enhancing the utilization of unconventional energy sources and mitigating greenhouse gas emissions.This study focuses on modifying the overall performance of CH_(4)/N_(2)separation membranes.A novel mixed matrix membrane(MMM)with a reinforced substrate structure was developed through a straightforward dip-coating technique.This MMM incorporates a polytetrafluoroethylene(PTFE)porous membrane as the supporting framework,while a composite of block polymer(styrene-butadiene-styrene)and metal-organic framework(Ni-MOF-74)forms the selective separation layer.Comprehensive characterization of Ni-MOF-74 and the fabricatedmembranes was conducted using X-rays diffraction,scanning electron microscope,Brunauer-Emmett-Teller analysis,and gas permeance tests.The findings indicate a robust integration of the PTFE porous support with the membrane layer,enhancing the mechanical stability of theMMM.Under optimal conditions,the mechanical strength of the PM20 membrane(containing 20%Ni-MOF-74)was observed to be 37.7 MPa,representing remarkable increase compared to the non-reinforcedMMM.Additionally,thePM20membrane exhibited an impressive CH4 permeation rate of 92 barrer(1 barrer﹦3.35×10^(-16)mol·m·m^(-2)·s^(-1)·Pa^(-1))alongside a CH_(4)/N_(2)selectivity of 4.18.These results underscore the MMM's substantial performance and its promising potential in methane enrichment applications.展开更多
Magnesium(Mg)is a widely used and attractive metal,known for its unique physical and chemical properties,and it has been employed in the manufacture of many practical materials.Layered Double Hydroxides(LDHs),particul...Magnesium(Mg)is a widely used and attractive metal,known for its unique physical and chemical properties,and it has been employed in the manufacture of many practical materials.Layered Double Hydroxides(LDHs),particularly Mg-based LDHs,rank among the most prevalent two-dimensional materials utilized in separation processes,which include adsorption,extraction,and membrane technology.The high popularity of Mg-based LDHs in separation applications can be attributed to their properties,such as excellent hydrophilicity,high surface area,ion exchangeability,and adjustable interlayer space.Currently,polymer membranes play a pivotal role in semi-industrial and industrial separation processes.Consequently,the development of polymer membranes and the mitigation of their limitations have emerged as compelling topics for researchers.Several methods exist to enhance the separation performance and anti-fouling properties of polymer membranes.Among these,incorporating additives into the membrane polymer matrix stands out as a cost-effective,straightforward,readily available,and efficient approach.The use of Mg-based LDHs,either in combination with other materials or as a standalone additive in the polymer membrane matrix,represents a promising strategy to bolster the separation and anti-fouling efficacy of flat sheet mixed matrix polymer membranes.This review highlights Mg-based LDHs as high-potential additives designed to refine flat sheet mixed matrix polymer membranes for applications in wastewater treatment and brackish water desalination.展开更多
In this paper, poly(amide-6-b-ethylene oxide) (Pebax1657)/SAPO-34 mixed matrix membranes (MMMs) were prepared by solvent-evaporation method with acetic acid as a novel solvent. CO2, N2, CH4 and H2 permeation pro...In this paper, poly(amide-6-b-ethylene oxide) (Pebax1657)/SAPO-34 mixed matrix membranes (MMMs) were prepared by solvent-evaporation method with acetic acid as a novel solvent. CO2, N2, CH4 and H2 permeation properties were investigated, and the physical properties of Pebax/SAPO-34 MMMs were characterized by XRD and SEM. At low SAPO-34 content, it was homogeneously distributed in the Pebax ma- trix, and then precipitated and agglomerated at high SAPO-34 content. The crystallinity of Pebax phase in Pebax/SAPO-34 MMMs decreased initially and then rebounded as a result of phase separation. With the increase of transmembrane pressure difference, CO2 permeability was en- hanced due to the effect of pressure-induced plasticization. Owing to the happening of stratification, the CO2 permeability of Pebax/SAPO-34 MMMs (50 wt% SAPO-34) increased to 338 Barrer from 111 Barrer of pristine Pebax, while the selectivities of CO2/CH4 and CO2/N2 were almost unchanged. Compared with the pristine Pebax, the gas separation performances of Pebax/SAPO-34 MMMs were remarkably enhanced.展开更多
Recent advances on mixed matrix membrane for CO<sub>2</sub> separation are reviewed in this paper. To improve CO<sub>2</sub> separation performance of polymer membranes, mixed matrix membranes ...Recent advances on mixed matrix membrane for CO<sub>2</sub> separation are reviewed in this paper. To improve CO<sub>2</sub> separation performance of polymer membranes, mixed matrix membranes (MMMs) are developed. The concept of MMM is illustrated distinctly. Suitable polymer and inorganic or organic fillers for MMMs are summarized. Possible interface morphologies between polymer and filler, and the effect of interface morphologies on gas transport properties of MMMs are summarized. The methods to improve compatibility between polymer and filler are introduced. There are eight methods including silane coupling, Grignard treatment, incorporation of additive, grafting, in situ polymerization, polydopamine coating, particle fusion approach and polymer functionalization. To achieve higher productivity for industrial application, mixed matrix composite membranes are developed. The recent development on hollow fiber and flat mixed matrix composite membrane is reviewed in detail. Last, the future trend of MMM is forecasted.展开更多
To enhance the performance of the polyphenylene sulfone(PPSU) membrane,a novel mixed matrix membrane with hydrophilicity and antifouling properties was prepared.Using PPSU as the ba sic membrane material,polyvinyl pyr...To enhance the performance of the polyphenylene sulfone(PPSU) membrane,a novel mixed matrix membrane with hydrophilicity and antifouling properties was prepared.Using PPSU as the ba sic membrane material,polyvinyl pyrrolidone(PVP) as the porogen,N-Methyl pyrrolidone(NMP) as the solvent,and MOF-CAU-1(Al_(4)(OH)_(2)(OCH_(3))_4(H_2 N-BDC)_(3)·xH_(2) O) as the filler,PPSU/CAU-1 mixed matrix membrane(MMM) was prepared by an immersion precipitation and phase transformation technique.By changing the amount of MOF-CAU-1,the properties and performance of the MMM membrane were investigated in terms of hydrophilicity,pore morphology,surface roughness,and dye removal.The results show that the highest pure water flux of the mixed reached 47.9 L·m^(-2)·h^(-1), when the CAU-1 addition amount was 1.0 wt%, which was 23% higher than that of the pure PPSU membrane.Both the rejection rate and the antifouling performance of the MMM membrane also noticeably improved.展开更多
Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and ...Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization.展开更多
Highly selective separation of CO_2 from its methane-containing binary gas mixture can be achieved by using Poly(ether-block-amide)(PEBAX)mixed matrix membranes(MMMs).According to FESEM and AFM analyses,silica-based n...Highly selective separation of CO_2 from its methane-containing binary gas mixture can be achieved by using Poly(ether-block-amide)(PEBAX)mixed matrix membranes(MMMs).According to FESEM and AFM analyses,silica-based nanoparticles were homogenously integrated within the polymer matrix,facilitating penetration of CO_2 through the membrane while acting as barrier for methane gas.The membrane containing 4.6 wt% fumed silica(FS)(PEBAX/4.6 wt%FS)exhibits astonishing selectivity results where binary gas mixture of CO_2/CH_4 was used as feed gas.As detected by gas chromatography,in the permeate side,data showed a significant increase of CO_2 permeance,while CH_4 transport through the mixed matrix membrane was not detectable.Moreover,PEBAX/4.6 wt%FS greatly exceeds the Robeson limit.According to data reported on CO_2/CH_4 gas pair separation in the literature,the results achieved in this work are beyond those data reported in the literature,particularly when PEBAX/4.6 wt%FS membrane was utilized.展开更多
Nanostructured zeolitic imidazolate frameworks(ZIF-8) was incorporated into the mixture of poly(ethylene glycol) methyl ether acrylate(PEGMEA) and pentaerythritol triacrylate(PETA) to synthesize mixed matrix membranes...Nanostructured zeolitic imidazolate frameworks(ZIF-8) was incorporated into the mixture of poly(ethylene glycol) methyl ether acrylate(PEGMEA) and pentaerythritol triacrylate(PETA) to synthesize mixed matrix membranes(MMMs) by in situ polymerization for CO_2/CH_4 separation. The solvent-free polymerization between PEGMEA and PETA was induced by UV light with 1-hydroxylcyclohexyl phenyl ketone as initiator. The chemical structural characterization was performed by Fourier transform infrared spectroscopy. The morphology was characterized by scanning electron microscope. The average chain-to-chain distance of the polymer chains in MMMs was investigated by X-ray diffraction. The thermal property was evaluated by differential scanning calorimetry. The CH_4 and CO_2 gas transport properties of MMMs are reported. The relationship between gas permeation–separation performances or physical properties and ZIF-8 loading is also discussed. However, the permeation–separation performance was not improved in Robeson upper bound plot compared with original polymer membrane as predicted. The significant partial pore blockage and polymer rigidification effect around the ZIFs confirmed by the increase in glass temperature and the decrease in the d-spacing, were mainly responsible for the failure in performance improvement, which offset the high diffusion induced by porous ZIF-8.展开更多
Watermelon, as a traditional dominant crop in Beijing, has obvious indus- trial advantages. The mixed substrate soilless cultivation techniques developed by the Beijing Agricultural Technology Extension Station for mi...Watermelon, as a traditional dominant crop in Beijing, has obvious indus- trial advantages. The mixed substrate soilless cultivation techniques developed by the Beijing Agricultural Technology Extension Station for mini watermelon in spring greenhouse can effectively solve the problem of continuous cropping in facility wa- termelon, and they are conducive to green, safe and efficient development of water- melon industry for fixed nutrient solution formula, automatic water and fertilizer irri- gation, stable product quality and facilitating large-scale and standardized production.展开更多
In order to decrease the probability of missing some data points or noises being added in the inverse truncated mixing matrix (ITMM) algorithm, a two-stage frequency- domain method is proposed for blind source separ...In order to decrease the probability of missing some data points or noises being added in the inverse truncated mixing matrix (ITMM) algorithm, a two-stage frequency- domain method is proposed for blind source separation of underdetermined instantaneous mixtures. The separation process is decomposed into two steps of ITMM and matrix completion in the view that there are many soft-sparse (not very sparse) sources. First, the mixing matrix is estimated and the sources are recovered by the traditional ITMM algorithm in the frequency domain. Then, in order to retrieve the missing data and remove noises, the matrix completion technique is applied to each preliminary estimated source by the traditional ITMM algorithm in the frequency domain. Simulations show that, compared with the traditional ITMM algorithms, the proposed two-stage algorithm has better separation performances. In addition, the time consumption problem is considered. The proposed algorithm outperforms the traditional ITMM algorithm at a cost of no more than one- fourth extra time consumption.展开更多
Membrane-based CO_2 separation is a promising alternative in terms of energy and environmental issues to other conventional techniques. Polyether-polyamide block copolymer(Pebax) membranes are promising for CO_2 separ...Membrane-based CO_2 separation is a promising alternative in terms of energy and environmental issues to other conventional techniques. Polyether-polyamide block copolymer(Pebax) membranes are promising for CO_2 separation because of their excellent selectivity, but limited by their moderate gas permeability. In this study,fresh-prepared zeolitic imidazolate framework-8(ZIF-8) nanocrystals were integrated into the Pebax?1657matrices to form mixed matrix membranes. The resulting membrane exhibits significantly improved CO_2permeability(as high as 300% increase), without the sacrifice of the selectivity, to the pristine polymer membrane. Several physical characterization techniques were employed to confirm the good interfacial interaction between ZIF-8 fillers and Pebax matrices. The effect of added ZIF-8 fillers on the transport mechanism through MMMs is also explored. Mixed-gas permeation for both CO_2/N_2 and CO_2/CH_4 was also evaluated. The separation performance for CO_2/CH_4 mixtures on the ZIF-8/Pebax MMMs is very close to the Roberson upper bound, and thus is technologically attractive for purification of natural gas.展开更多
Bioethanol, as a clean and renewable fuel, has gained increasing attention due to its major environmental benefits. Pervaporation(PV) is a promising and competitive technique for the recovery of ethanol from bioethano...Bioethanol, as a clean and renewable fuel, has gained increasing attention due to its major environmental benefits. Pervaporation(PV) is a promising and competitive technique for the recovery of ethanol from bioethanol fermentation systems due to the advantages of environmental friendliness, low energy consumption and easy coupling with fermentation process. The main challenge for the industrial application of ethanol perm-selective membranes is to break the trade-off effect between permeability and selectivity. As membrane is the heart of the pervaporation separation process, this article attempts to provide a comprehensive survey on the breakthroughs of ethanol perm-selective PV membranes from the perspectives of tailoring membrane materials to enhance PV separation performance. The research and development of polymeric and organic/inorganic hybrid membranes are reviewed to explore the fundamental structure-property-performance relationships. It is found that mixed matrix membranes with welldesigned membrane structures offer the hope of better control overphysi-/chemical microenvironment and cavity/pore size as well as size distribution, which may provide both high permeability and membrane selectivity to break the trade-off effect. The tentative perspective on the possible future directions of ethanol perm-selective membranes is also briefly discussed, which may provide some insights in developing a new generation of high-performance PV membranes for ethanol recovery.展开更多
Conventional process monitoring method based on fast independent component analysis(Fast ICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the advers...Conventional process monitoring method based on fast independent component analysis(Fast ICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the adverse effects of the measurement noises. In this paper, a new process monitoring approach based on noisy time structure ICA(Noisy TSICA) is proposed to solve such problem. A Noisy TSICA algorithm which can consider the measurement noises explicitly is firstly developed to estimate the mixing matrix and extract the independent components(ICs). Subsequently, a monitoring statistic is built to detect process faults on the basis of the recursive kurtosis estimations of the dominant ICs. Lastly, a contribution plot for the monitoring statistic is constructed to identify the fault variables based on the sensitivity analysis. Simulation studies on the continuous stirred tank reactor system demonstrate that the proposed Noisy TSICA-based monitoring method outperforms the conventional Fast ICA-based monitoring method.展开更多
As an emerging zero-dimensional nano crystalline porous material,porous organic cages(POCs)with soluble properties in organic solvents,are promising candidates as molecular fillers in mixed matrix membranes(MMMs).The ...As an emerging zero-dimensional nano crystalline porous material,porous organic cages(POCs)with soluble properties in organic solvents,are promising candidates as molecular fillers in mixed matrix membranes(MMMs).The pore structure of POCs should be adjusted to trigger efficient gas separation performance,and the interaction between filler and matrix should be optimized.In this work,ionic liquid(IL)was introduced into the molecular fillers of CC3,to construct the IL@CC3/PIM-1 membrane to effectively separate CO_(2) from CH_(4).The advantages of doping IL include:(1)narrowing the cavity size of POCs from 4.4 to 3.9Åto enhance the diffusion selectivity,(2)strengthening the CO_(2) solubility to heighten the gas permeability,and(3)improving the compatibility between filler and matrix to upgrade membrane stability.After the optimization of the membrane composite,the IL@CC3/PIM-1-10%membrane possesses the CO_(2) permeability of 7868 Barrer and the CO_(2)/CH_(4) selectivity of 73.4,which compared to the CC3/PIM-1-10%membrane,improved by 15.9%and 106.2%,respectively.Furthermore,the membrane has maintained a stable separation performance at varied temperatures and pressures during the long-term test.The proposed method offers an efficient way to improve the performance of POCs-based MMMs in gas separation.展开更多
Nowadays,mixed matrix membranes(MMMs)have considered by many researchers to overcome the problems of polymeric membranes.In addition,molecular dynamics(MD)and Monte Carlo(MC)simulation Methods are suitable tools for s...Nowadays,mixed matrix membranes(MMMs)have considered by many researchers to overcome the problems of polymeric membranes.In addition,molecular dynamics(MD)and Monte Carlo(MC)simulation Methods are suitable tools for studying transport properties and morphology in MMMs.For this purpose,in this study using material studio 2017(MS)software,the transport properties of CO2,CH4 and N2 in Pebax,Psf neat Pebax/Psf composite and Pebax/Psf composite filled with ZIF-90 particles have been investigated.By adding Psf to Pebax matrix,the selectivity of CO2/CH4 and CO2/N2 gases has significantly increased.In addition,adding ZIF-90 particles to the Pebax/Psf composite increased the permeability of CO2,CH4 and N2 compared to neat and composite membranes.The morphological properties of the membranes,such as the fractional free volume(FFV),radial distribution function(RDF),glass transition temperature(TG),X-ray diffraction(XRD)and equilibrium density have calculated and acceptable results have obtained.展开更多
The current study aims to investigate the particular case of two zeros in a Majorana neutrino mass matrix based on A_(4) symmetry,where charged lepton mass matrix is diagonal.The texture is M_(ν)^(S7) with(μ,μ)and(...The current study aims to investigate the particular case of two zeros in a Majorana neutrino mass matrix based on A_(4) symmetry,where charged lepton mass matrix is diagonal.The texture is M_(ν)^(S7) with(μ,μ)and(τ,τ)vanishing element of the neutrino mass matrix.The texture M_(ν)^(S7) has magic and μ−τsymmetry,with a tribimaximal form of the mixing matrix,which leads to θ_(13)=0 that it is not consistent with experimental data and at first,does not seem to be allowed.Since θ_(13) a small mixing angle compared to others neutrino mixing angles justifies the use of perturbation theory.We propose that,θ_(13),and the Dirac phase δ,and two Majorana phases ρ and σ could be generated by using a complex symmetric perturbation mass matrix in the mass basis and find that δm^(2)≡m_(2)^(2)-m_(1)^(2)≠0affect to the atmospheric mixing angle.We show that only the predictions of the case I,with Δ<0 and Re(α)<0,are consistent with the experimental data.Furthermore,the allowed range of our parameter space and complex elements of perturbation mass matrix are found,which led to finding the allowed region of the neutrino masses,the Majorana phases,the effective neutrino mass for the neutrinoless double beta decay,the allowed deviation of θ_(23) from 45°,and to predict the normal neutrino mass hierarchy.The predicted region of<m_(νββ)> and θ_(23) are in line with the current experimental data which indicate the accuracy of our model and its results.The results of the case II,with Δ>0 and Re(α)>0,are ruled out.展开更多
基金financial support of this work by Natural Science Foundation of China(22075031,51673030,51603017 and 51803011)Jilin Provincial Science&Technology Department(20220201105GX)Chang Bai Mountain Scholars Program of Jilin Province.
文摘For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then adding amino-functionalized UiO-66-NH_(2)(Am-UiO-66-NH_(2)).Aminofunctionalization of UiO-66 was accomplished by melamine,followed by an amidation reaction to immobilize Am-UiO-66-NH_(2),which was immobilized on the surface of the membrane as well as in the pore channels,which enhanced the hydrophilicity of the membrane surface while increasing the negative potential of the membrane surface.This nanoparticle-loaded ultrafiltration membrane has good permeation performance,with a pure water flux of up to 482.3 L·m^(-2)·h^(-1) for C-SPAEKS/AmUiO-66-NH_(2) and a retention rate of up to 98.7%for bovine serum albumin(BSA)-contaminated solutions.Meanwhile,after several hydrophilic modifications,the flux recovery of BSA contaminants by this series of membranes increased from 56.2%to 80.55%of pure membranes.The results of ultra-filtration flux time tests performed at room temperature showed that the series of ultrafiltration membranes remained relatively stable over a test time of 300 min.Thus,the newly developed mixed matrix membrane showed potential for high efficiency and stability in wastewater treatment containing bovine serum proteins.
基金support from Sichuan Science and Technology Program(2021YFH0116)National Natural Science Foundation of China(No.52170112)DongFang Boiler Co.,Ltd.(3522015).
文摘Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,such as the presence of interfacial voids,hardening of polymer chains,and blockage of micropores by polymers between common MMMsfillers and the polymer matrix,currently limit the gas sep-aration performance of MMMs.Ternary phase MMMs(consisting of afiller,an additive,and a matrix)made by adding a third compound,usually functionalized additives,can overcome the structural problems of binary phase MMMs and positively impact membrane separation performance.This review introduces the structure and fabrication processes for ternary MMMs,categorizes various nanofillers and the third component,and summarizes and analyzes in detail the CO_(2) separation performance of newly developed ternary MMMs based on both rubbery and glassy polymers.Based on this separation data,the challenges of ternary MMMs are also discussed.Finally,future directions for ternary MMMs are proposed.
基金*The project partly supported by the Special Scientific Research Foundation for Ph. D. Program of Universities of China, National Natural Science Foundation of China
文摘We study constraints on neutrino properties for a class of bi-large mixing See-Saw mass matrices with texture zeros and with the related Dirac neutrino mass matrix to be proportional to a diagonal matrix of the form diag (e, 1, 1). Texture zeros may occur in the light (class a)) or in the heavy (class b)) neutrino mass matrices. Each of these two classes has 5 different forms which can produce non-trivial three generation mixing with at least one texture zero. We tind that two types of texture zero mass matrices in both class a and class b can be consistent with present data on neutrino masses and mixing. None of the neutrinos can have zero masses and the lightest of the light neutrinos has a mass larger than about 0.046 eV for class a and 0.0027 eV for class b. In these models although the CK.M CP violating phase vanishes, the non-zero Majorana phases can exist and can play an important role in producing the observed baryon asymmetry in our universe through leptogenesis mechanism. The requirement of producing the observed baryon asymmetry can further distinguish different models and also restrict the See-Saw scale to be in the range of 10^12- 10^15 GeV. We also discuss RG effects on V^13.
基金Supported by the National Natural Science Foundation of China(No.51204145)Natural Science Foundation of Hebei Province of China(No.2013203300)
文摘Under the underdetermined blind sources separation(UBSS) circumstance,it is difficult to estimate the mixing matrix with high-precision because of unknown sparsity of signals.The mixing matrix estimation is proposed based on linear aggregation degree of signal scatter plot without knowing sparsity,and the linear aggregation degree evaluation of observed signals is presented which obeys generalized Gaussian distribution(GGD).Both the GGD shape parameter and the signals' correlation features affect the observation signals sparsity and further affected the directionality of time-frequency scatter plot.So a new mixing matrix estimation method is proposed for different sparsity degrees,which especially focuses on unclear directionality of scatter plot and weak linear aggregation degree.Firstly,the direction of coefficient scatter plot by time-frequency transform is improved and then the single source coefficients in the case of weak linear clustering is processed finally the improved K-means clustering is applied to achieve the estimation of mixing matrix.The proposed algorithm reduces the requirements of signals sparsity and independence,and the mixing matrix can be estimated with high accuracy.The simulation results show the feasibility and effectiveness of the algorithm.
基金financial support from the National Natural Science Foundation of China(52174229 and 52174230)the Natural Science Foundation of Liaoning Province(2022-KF-13-05)+1 种基金Fushun Revitalization Talents Program(FSYC202107010)the program funded by Liaoning Province Education Administration(LJKZ0411).
文摘Efficiently enriching low-concentration CH4 is pivotal for enhancing the utilization of unconventional energy sources and mitigating greenhouse gas emissions.This study focuses on modifying the overall performance of CH_(4)/N_(2)separation membranes.A novel mixed matrix membrane(MMM)with a reinforced substrate structure was developed through a straightforward dip-coating technique.This MMM incorporates a polytetrafluoroethylene(PTFE)porous membrane as the supporting framework,while a composite of block polymer(styrene-butadiene-styrene)and metal-organic framework(Ni-MOF-74)forms the selective separation layer.Comprehensive characterization of Ni-MOF-74 and the fabricatedmembranes was conducted using X-rays diffraction,scanning electron microscope,Brunauer-Emmett-Teller analysis,and gas permeance tests.The findings indicate a robust integration of the PTFE porous support with the membrane layer,enhancing the mechanical stability of theMMM.Under optimal conditions,the mechanical strength of the PM20 membrane(containing 20%Ni-MOF-74)was observed to be 37.7 MPa,representing remarkable increase compared to the non-reinforcedMMM.Additionally,thePM20membrane exhibited an impressive CH4 permeation rate of 92 barrer(1 barrer﹦3.35×10^(-16)mol·m·m^(-2)·s^(-1)·Pa^(-1))alongside a CH_(4)/N_(2)selectivity of 4.18.These results underscore the MMM's substantial performance and its promising potential in methane enrichment applications.
文摘Magnesium(Mg)is a widely used and attractive metal,known for its unique physical and chemical properties,and it has been employed in the manufacture of many practical materials.Layered Double Hydroxides(LDHs),particularly Mg-based LDHs,rank among the most prevalent two-dimensional materials utilized in separation processes,which include adsorption,extraction,and membrane technology.The high popularity of Mg-based LDHs in separation applications can be attributed to their properties,such as excellent hydrophilicity,high surface area,ion exchangeability,and adjustable interlayer space.Currently,polymer membranes play a pivotal role in semi-industrial and industrial separation processes.Consequently,the development of polymer membranes and the mitigation of their limitations have emerged as compelling topics for researchers.Several methods exist to enhance the separation performance and anti-fouling properties of polymer membranes.Among these,incorporating additives into the membrane polymer matrix stands out as a cost-effective,straightforward,readily available,and efficient approach.The use of Mg-based LDHs,either in combination with other materials or as a standalone additive in the polymer membrane matrix,represents a promising strategy to bolster the separation and anti-fouling efficacy of flat sheet mixed matrix polymer membranes.This review highlights Mg-based LDHs as high-potential additives designed to refine flat sheet mixed matrix polymer membranes for applications in wastewater treatment and brackish water desalination.
基金supported by the National Science and Technology Planning Project(No.2011BAC08B00)the National High Technology Research and Development Program of China(863 Program)(No.2012AA03A611)
文摘In this paper, poly(amide-6-b-ethylene oxide) (Pebax1657)/SAPO-34 mixed matrix membranes (MMMs) were prepared by solvent-evaporation method with acetic acid as a novel solvent. CO2, N2, CH4 and H2 permeation properties were investigated, and the physical properties of Pebax/SAPO-34 MMMs were characterized by XRD and SEM. At low SAPO-34 content, it was homogeneously distributed in the Pebax ma- trix, and then precipitated and agglomerated at high SAPO-34 content. The crystallinity of Pebax phase in Pebax/SAPO-34 MMMs decreased initially and then rebounded as a result of phase separation. With the increase of transmembrane pressure difference, CO2 permeability was en- hanced due to the effect of pressure-induced plasticization. Owing to the happening of stratification, the CO2 permeability of Pebax/SAPO-34 MMMs (50 wt% SAPO-34) increased to 338 Barrer from 111 Barrer of pristine Pebax, while the selectivities of CO2/CH4 and CO2/N2 were almost unchanged. Compared with the pristine Pebax, the gas separation performances of Pebax/SAPO-34 MMMs were remarkably enhanced.
基金Supported by the National Natural Science Foundation of China(21436009)the Program of Introducing Talents of Discipline to Universities(B06006)
文摘Recent advances on mixed matrix membrane for CO<sub>2</sub> separation are reviewed in this paper. To improve CO<sub>2</sub> separation performance of polymer membranes, mixed matrix membranes (MMMs) are developed. The concept of MMM is illustrated distinctly. Suitable polymer and inorganic or organic fillers for MMMs are summarized. Possible interface morphologies between polymer and filler, and the effect of interface morphologies on gas transport properties of MMMs are summarized. The methods to improve compatibility between polymer and filler are introduced. There are eight methods including silane coupling, Grignard treatment, incorporation of additive, grafting, in situ polymerization, polydopamine coating, particle fusion approach and polymer functionalization. To achieve higher productivity for industrial application, mixed matrix composite membranes are developed. The recent development on hollow fiber and flat mixed matrix composite membrane is reviewed in detail. Last, the future trend of MMM is forecasted.
基金supported by Key Research and Development of Tangshan (19140204F)。
文摘To enhance the performance of the polyphenylene sulfone(PPSU) membrane,a novel mixed matrix membrane with hydrophilicity and antifouling properties was prepared.Using PPSU as the ba sic membrane material,polyvinyl pyrrolidone(PVP) as the porogen,N-Methyl pyrrolidone(NMP) as the solvent,and MOF-CAU-1(Al_(4)(OH)_(2)(OCH_(3))_4(H_2 N-BDC)_(3)·xH_(2) O) as the filler,PPSU/CAU-1 mixed matrix membrane(MMM) was prepared by an immersion precipitation and phase transformation technique.By changing the amount of MOF-CAU-1,the properties and performance of the MMM membrane were investigated in terms of hydrophilicity,pore morphology,surface roughness,and dye removal.The results show that the highest pure water flux of the mixed reached 47.9 L·m^(-2)·h^(-1), when the CAU-1 addition amount was 1.0 wt%, which was 23% higher than that of the pure PPSU membrane.Both the rejection rate and the antifouling performance of the MMM membrane also noticeably improved.
基金the financial support from the National Natural Science Foundation of China(No.21436009)
文摘Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization.
基金financial support of Research Institute of Petroleum Industry
文摘Highly selective separation of CO_2 from its methane-containing binary gas mixture can be achieved by using Poly(ether-block-amide)(PEBAX)mixed matrix membranes(MMMs).According to FESEM and AFM analyses,silica-based nanoparticles were homogenously integrated within the polymer matrix,facilitating penetration of CO_2 through the membrane while acting as barrier for methane gas.The membrane containing 4.6 wt% fumed silica(FS)(PEBAX/4.6 wt%FS)exhibits astonishing selectivity results where binary gas mixture of CO_2/CH_4 was used as feed gas.As detected by gas chromatography,in the permeate side,data showed a significant increase of CO_2 permeance,while CH_4 transport through the mixed matrix membrane was not detectable.Moreover,PEBAX/4.6 wt%FS greatly exceeds the Robeson limit.According to data reported on CO_2/CH_4 gas pair separation in the literature,the results achieved in this work are beyond those data reported in the literature,particularly when PEBAX/4.6 wt%FS membrane was utilized.
基金Supported by the National Natural Science Foundation of China(21776217,21506160)Tianjin Research Program of Application Foundation and Advanced Technology(14JCQNJC06400)+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars(48)the Science and Technology Plans of Tianjin(16PTSYJC00110)
文摘Nanostructured zeolitic imidazolate frameworks(ZIF-8) was incorporated into the mixture of poly(ethylene glycol) methyl ether acrylate(PEGMEA) and pentaerythritol triacrylate(PETA) to synthesize mixed matrix membranes(MMMs) by in situ polymerization for CO_2/CH_4 separation. The solvent-free polymerization between PEGMEA and PETA was induced by UV light with 1-hydroxylcyclohexyl phenyl ketone as initiator. The chemical structural characterization was performed by Fourier transform infrared spectroscopy. The morphology was characterized by scanning electron microscope. The average chain-to-chain distance of the polymer chains in MMMs was investigated by X-ray diffraction. The thermal property was evaluated by differential scanning calorimetry. The CH_4 and CO_2 gas transport properties of MMMs are reported. The relationship between gas permeation–separation performances or physical properties and ZIF-8 loading is also discussed. However, the permeation–separation performance was not improved in Robeson upper bound plot compared with original polymer membrane as predicted. The significant partial pore blockage and polymer rigidification effect around the ZIFs confirmed by the increase in glass temperature and the decrease in the d-spacing, were mainly responsible for the failure in performance improvement, which offset the high diffusion induced by porous ZIF-8.
文摘Watermelon, as a traditional dominant crop in Beijing, has obvious indus- trial advantages. The mixed substrate soilless cultivation techniques developed by the Beijing Agricultural Technology Extension Station for mini watermelon in spring greenhouse can effectively solve the problem of continuous cropping in facility wa- termelon, and they are conducive to green, safe and efficient development of water- melon industry for fixed nutrient solution formula, automatic water and fertilizer irri- gation, stable product quality and facilitating large-scale and standardized production.
基金The National Natural Science Foundation of China(No.60872074)
文摘In order to decrease the probability of missing some data points or noises being added in the inverse truncated mixing matrix (ITMM) algorithm, a two-stage frequency- domain method is proposed for blind source separation of underdetermined instantaneous mixtures. The separation process is decomposed into two steps of ITMM and matrix completion in the view that there are many soft-sparse (not very sparse) sources. First, the mixing matrix is estimated and the sources are recovered by the traditional ITMM algorithm in the frequency domain. Then, in order to retrieve the missing data and remove noises, the matrix completion technique is applied to each preliminary estimated source by the traditional ITMM algorithm in the frequency domain. Simulations show that, compared with the traditional ITMM algorithms, the proposed two-stage algorithm has better separation performances. In addition, the time consumption problem is considered. The proposed algorithm outperforms the traditional ITMM algorithm at a cost of no more than one- fourth extra time consumption.
基金Supported by the National Natural Science Foundation of China(21406106)Jiangsu Provincial NSFC(BK20130928)+2 种基金Foundation of Jiangsu Educational Committee of China(14KJB530006)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Research and Innovation Program for College Postgraduates of Jiangsu Province(Grant SJLX16_0300)
文摘Membrane-based CO_2 separation is a promising alternative in terms of energy and environmental issues to other conventional techniques. Polyether-polyamide block copolymer(Pebax) membranes are promising for CO_2 separation because of their excellent selectivity, but limited by their moderate gas permeability. In this study,fresh-prepared zeolitic imidazolate framework-8(ZIF-8) nanocrystals were integrated into the Pebax?1657matrices to form mixed matrix membranes. The resulting membrane exhibits significantly improved CO_2permeability(as high as 300% increase), without the sacrifice of the selectivity, to the pristine polymer membrane. Several physical characterization techniques were employed to confirm the good interfacial interaction between ZIF-8 fillers and Pebax matrices. The effect of added ZIF-8 fillers on the transport mechanism through MMMs is also explored. Mixed-gas permeation for both CO_2/N_2 and CO_2/CH_4 was also evaluated. The separation performance for CO_2/CH_4 mixtures on the ZIF-8/Pebax MMMs is very close to the Roberson upper bound, and thus is technologically attractive for purification of natural gas.
基金financial support of Beijing Natural Science Foundation Commission-Beijing Municipal Education Commission Joint Foundation,China(KZ201910011012)National Natural Science Foundation of China(21736001,21776153,21206001)+1 种基金Open Research Fund Program of Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry(CP-2020-YB7)College Students Scientific Research and Undertaking Starting Action Project,China。
文摘Bioethanol, as a clean and renewable fuel, has gained increasing attention due to its major environmental benefits. Pervaporation(PV) is a promising and competitive technique for the recovery of ethanol from bioethanol fermentation systems due to the advantages of environmental friendliness, low energy consumption and easy coupling with fermentation process. The main challenge for the industrial application of ethanol perm-selective membranes is to break the trade-off effect between permeability and selectivity. As membrane is the heart of the pervaporation separation process, this article attempts to provide a comprehensive survey on the breakthroughs of ethanol perm-selective PV membranes from the perspectives of tailoring membrane materials to enhance PV separation performance. The research and development of polymeric and organic/inorganic hybrid membranes are reviewed to explore the fundamental structure-property-performance relationships. It is found that mixed matrix membranes with welldesigned membrane structures offer the hope of better control overphysi-/chemical microenvironment and cavity/pore size as well as size distribution, which may provide both high permeability and membrane selectivity to break the trade-off effect. The tentative perspective on the possible future directions of ethanol perm-selective membranes is also briefly discussed, which may provide some insights in developing a new generation of high-performance PV membranes for ethanol recovery.
基金Supported by the National Natural Science Foundation of China(61273160)the Natural Science Foundation of Shandong Province(ZR2011FM014)+1 种基金the Fundamental Research Funds for the Central Universities(12CX06071A)the Postgraduate Innovation Funds of China University of Petroleum(CX2013060)
文摘Conventional process monitoring method based on fast independent component analysis(Fast ICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the adverse effects of the measurement noises. In this paper, a new process monitoring approach based on noisy time structure ICA(Noisy TSICA) is proposed to solve such problem. A Noisy TSICA algorithm which can consider the measurement noises explicitly is firstly developed to estimate the mixing matrix and extract the independent components(ICs). Subsequently, a monitoring statistic is built to detect process faults on the basis of the recursive kurtosis estimations of the dominant ICs. Lastly, a contribution plot for the monitoring statistic is constructed to identify the fault variables based on the sensitivity analysis. Simulation studies on the continuous stirred tank reactor system demonstrate that the proposed Noisy TSICA-based monitoring method outperforms the conventional Fast ICA-based monitoring method.
基金supported by the National Natural Science Foundation of China(Nos.21875285,22171288,22005340)the Key Research and Development Projects of Shandong Province(No.2019JZZY010331)+2 种基金the Natural Science Foundation of Shandong Province(Nos.ZR2020MB017,ZR2022MB009)the Fundamental Research Funds for the Central Universities(No.23CX07004A)the Outstanding Youth Science Fund Projects of Shandong Province(Nos.2022HWYQ-070,ZR2022YQ15).
文摘As an emerging zero-dimensional nano crystalline porous material,porous organic cages(POCs)with soluble properties in organic solvents,are promising candidates as molecular fillers in mixed matrix membranes(MMMs).The pore structure of POCs should be adjusted to trigger efficient gas separation performance,and the interaction between filler and matrix should be optimized.In this work,ionic liquid(IL)was introduced into the molecular fillers of CC3,to construct the IL@CC3/PIM-1 membrane to effectively separate CO_(2) from CH_(4).The advantages of doping IL include:(1)narrowing the cavity size of POCs from 4.4 to 3.9Åto enhance the diffusion selectivity,(2)strengthening the CO_(2) solubility to heighten the gas permeability,and(3)improving the compatibility between filler and matrix to upgrade membrane stability.After the optimization of the membrane composite,the IL@CC3/PIM-1-10%membrane possesses the CO_(2) permeability of 7868 Barrer and the CO_(2)/CH_(4) selectivity of 73.4,which compared to the CC3/PIM-1-10%membrane,improved by 15.9%and 106.2%,respectively.Furthermore,the membrane has maintained a stable separation performance at varied temperatures and pressures during the long-term test.The proposed method offers an efficient way to improve the performance of POCs-based MMMs in gas separation.
文摘Nowadays,mixed matrix membranes(MMMs)have considered by many researchers to overcome the problems of polymeric membranes.In addition,molecular dynamics(MD)and Monte Carlo(MC)simulation Methods are suitable tools for studying transport properties and morphology in MMMs.For this purpose,in this study using material studio 2017(MS)software,the transport properties of CO2,CH4 and N2 in Pebax,Psf neat Pebax/Psf composite and Pebax/Psf composite filled with ZIF-90 particles have been investigated.By adding Psf to Pebax matrix,the selectivity of CO2/CH4 and CO2/N2 gases has significantly increased.In addition,adding ZIF-90 particles to the Pebax/Psf composite increased the permeability of CO2,CH4 and N2 compared to neat and composite membranes.The morphological properties of the membranes,such as the fractional free volume(FFV),radial distribution function(RDF),glass transition temperature(TG),X-ray diffraction(XRD)and equilibrium density have calculated and acceptable results have obtained.
文摘The current study aims to investigate the particular case of two zeros in a Majorana neutrino mass matrix based on A_(4) symmetry,where charged lepton mass matrix is diagonal.The texture is M_(ν)^(S7) with(μ,μ)and(τ,τ)vanishing element of the neutrino mass matrix.The texture M_(ν)^(S7) has magic and μ−τsymmetry,with a tribimaximal form of the mixing matrix,which leads to θ_(13)=0 that it is not consistent with experimental data and at first,does not seem to be allowed.Since θ_(13) a small mixing angle compared to others neutrino mixing angles justifies the use of perturbation theory.We propose that,θ_(13),and the Dirac phase δ,and two Majorana phases ρ and σ could be generated by using a complex symmetric perturbation mass matrix in the mass basis and find that δm^(2)≡m_(2)^(2)-m_(1)^(2)≠0affect to the atmospheric mixing angle.We show that only the predictions of the case I,with Δ<0 and Re(α)<0,are consistent with the experimental data.Furthermore,the allowed range of our parameter space and complex elements of perturbation mass matrix are found,which led to finding the allowed region of the neutrino masses,the Majorana phases,the effective neutrino mass for the neutrinoless double beta decay,the allowed deviation of θ_(23) from 45°,and to predict the normal neutrino mass hierarchy.The predicted region of<m_(νββ)> and θ_(23) are in line with the current experimental data which indicate the accuracy of our model and its results.The results of the case II,with Δ>0 and Re(α)>0,are ruled out.