Matrix rings are prominent in abstract algebra. In this paper we give an overview of the theory of matrix near-rings. A near-ring differs from a ring in that it does not need to be abelian and one of the distributive ...Matrix rings are prominent in abstract algebra. In this paper we give an overview of the theory of matrix near-rings. A near-ring differs from a ring in that it does not need to be abelian and one of the distributive laws does not hold in general. We introduce two ways in which matrix near-rings can be defined and discuss the structure of each. One is as given by Beildeman and the other is as defined by Meldrum. Beildeman defined his matrix near-rings as normal arrays under the operation of matrix multiplication and addition. He showed that we have a matrix near-ring over a near-ring if, and only if, it is a ring. In this case it is not possible to obtain a matrix near-ring from a proper near-ring. Later, in 1986, Meldrum and van der Walt defined matrix near-rings over a near-ring as mappings from the direct sum of n copies of the additive group of the near-ring to itself. In this case it can be shown that a proper near-ring is obtained. We prove several properties, introduce some special matrices and show that a matrix notation can be introduced to make calculations easier, provided that n is small.展开更多
By inserting an air cavity into a one-dimensional photonic crystal of LiF/GaSb, a tunable filter covering the whole visible range is proposed. Following consideration of the dispersion of the materials, through modula...By inserting an air cavity into a one-dimensional photonic crystal of LiF/GaSb, a tunable filter covering the whole visible range is proposed. Following consideration of the dispersion of the materials, through modulating the thickness of the air cavity, we demonstrate that a single resonant peak can shift from 416.1 to 667.3 nm in the band gap at normal incidence by means of the transfer matrix method. The research also shows that the transmittance of the channel can be maximized when the number of periodic Li F/Ga Sb layers on one side of the air defect layer is equal to that of the other side. When adding a period to both sides respectively, the full width at half maximum of the defect mode is reduced by one order of magnitude. This structure will provide a promising approach to fabricate practical tunable filters in the visible region with ultra-wide tuning range.展开更多
文摘Matrix rings are prominent in abstract algebra. In this paper we give an overview of the theory of matrix near-rings. A near-ring differs from a ring in that it does not need to be abelian and one of the distributive laws does not hold in general. We introduce two ways in which matrix near-rings can be defined and discuss the structure of each. One is as given by Beildeman and the other is as defined by Meldrum. Beildeman defined his matrix near-rings as normal arrays under the operation of matrix multiplication and addition. He showed that we have a matrix near-ring over a near-ring if, and only if, it is a ring. In this case it is not possible to obtain a matrix near-ring from a proper near-ring. Later, in 1986, Meldrum and van der Walt defined matrix near-rings over a near-ring as mappings from the direct sum of n copies of the additive group of the near-ring to itself. In this case it can be shown that a proper near-ring is obtained. We prove several properties, introduce some special matrices and show that a matrix notation can be introduced to make calculations easier, provided that n is small.
基金Project supported by the National Natural Science Foundation of China(Nos.61575138,61307069,51205273)the Top Young Academic Leaders and the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi
文摘By inserting an air cavity into a one-dimensional photonic crystal of LiF/GaSb, a tunable filter covering the whole visible range is proposed. Following consideration of the dispersion of the materials, through modulating the thickness of the air cavity, we demonstrate that a single resonant peak can shift from 416.1 to 667.3 nm in the band gap at normal incidence by means of the transfer matrix method. The research also shows that the transmittance of the channel can be maximized when the number of periodic Li F/Ga Sb layers on one side of the air defect layer is equal to that of the other side. When adding a period to both sides respectively, the full width at half maximum of the defect mode is reduced by one order of magnitude. This structure will provide a promising approach to fabricate practical tunable filters in the visible region with ultra-wide tuning range.