A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure ass...A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure assignment. By introducing the H2 norm of the transfer function from disturbance to estimation error, sufficient and necessary conditions for disturbance decoupling in matrix second-order linear systems are established and are arranged into constraints on the design parameters via Luenberger function observers in terms of the closed-loop eigenvalues and the group of design parameters provided by the eigenstructure assignment approach. Therefore, the disturbance decoupling problem is converted into an eigenstructure assignment problem with extra parameter constraints. A simple example is investigated to show the effect and simplicity of the approach.展开更多
The issue of designing a type of generalized Luenberger observers for matrix second-order linear (MSOL) systems was addressed in the matrix second-order framework. By introducing the concept of stable matrix pair for ...The issue of designing a type of generalized Luenberger observers for matrix second-order linear (MSOL) systems was addressed in the matrix second-order framework. By introducing the concept of stable matrix pair for MSOL systems, sufficient and necessary conditions for the design of the type of generalized Luenberger observers were given under the assumption of controllability and observability of the MSOL system. Based on the proposed conditions and the right coprime factorization of the system, a parametric approach to the design of such type of observers was presented. The proposed approach provides all the degrees of design freedom, which can be further utilized to achieve additional system specifications. A spring-mass system was utilized to show the effect of the proposed method.展开更多
A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general para...A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general parametric solutions to this type of generalized matrix second-order Sylvester matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the fight factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass-dashpot system is utilized to illustrate the design procedure and show the effect of the proposed approach.展开更多
In this paper we introduce the class of Hermite's matrix polynomials which appear as finite series solutions of second order matrix differential equations Y'-xAY'+BY=0.An explicit expression for the Hermit...In this paper we introduce the class of Hermite's matrix polynomials which appear as finite series solutions of second order matrix differential equations Y'-xAY'+BY=0.An explicit expression for the Hermite matrix polynomials,the orthogonality property and a Rodrigues' formula are given.展开更多
This paper considers the optimal model reduction problem of matrix second-order linear systems in the sense of Hilbert-Schmidt-Hankel norm, with the reduced order systems preserving the structure of the original syste...This paper considers the optimal model reduction problem of matrix second-order linear systems in the sense of Hilbert-Schmidt-Hankel norm, with the reduced order systems preserving the structure of the original systems. The expressions of the error function and its gradient are derived. Two numerical examples are given to illustrate the presented model reduction technique.展开更多
By using the Riccati technique and the technique, new oscillation criteriaare obtained for the second order matrix differential system (P(t)Y'(t))' + r(t)P(t)Y(t) + Q(t)Y (t)= 0, t ≥ t_0. These results in the...By using the Riccati technique and the technique, new oscillation criteriaare obtained for the second order matrix differential system (P(t)Y'(t))' + r(t)P(t)Y(t) + Q(t)Y (t)= 0, t ≥ t_0. These results in the present paper generalize and improve many known conclusions.Furthermore, some results are different from the most known ones in the sense that they are based onthe information only on a sequence of subintervals of [t 0,), rather than on the whole half–line.In particular, our results complement a number of existing results and handle the case that is notcovered by the known criteria.展开更多
文摘A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure assignment. By introducing the H2 norm of the transfer function from disturbance to estimation error, sufficient and necessary conditions for disturbance decoupling in matrix second-order linear systems are established and are arranged into constraints on the design parameters via Luenberger function observers in terms of the closed-loop eigenvalues and the group of design parameters provided by the eigenstructure assignment approach. Therefore, the disturbance decoupling problem is converted into an eigenstructure assignment problem with extra parameter constraints. A simple example is investigated to show the effect and simplicity of the approach.
文摘The issue of designing a type of generalized Luenberger observers for matrix second-order linear (MSOL) systems was addressed in the matrix second-order framework. By introducing the concept of stable matrix pair for MSOL systems, sufficient and necessary conditions for the design of the type of generalized Luenberger observers were given under the assumption of controllability and observability of the MSOL system. Based on the proposed conditions and the right coprime factorization of the system, a parametric approach to the design of such type of observers was presented. The proposed approach provides all the degrees of design freedom, which can be further utilized to achieve additional system specifications. A spring-mass system was utilized to show the effect of the proposed method.
基金This work was supported by the Chinese National Natural Science Foundation ( No. 69925308).
文摘A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general parametric solutions to this type of generalized matrix second-order Sylvester matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the fight factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass-dashpot system is utilized to illustrate the design procedure and show the effect of the proposed approach.
文摘In this paper we introduce the class of Hermite's matrix polynomials which appear as finite series solutions of second order matrix differential equations Y'-xAY'+BY=0.An explicit expression for the Hermite matrix polynomials,the orthogonality property and a Rodrigues' formula are given.
基金supported by the National Nature Science Foundation of China (No. 60804032)the Central University Basic Research Foundation of South China University of Technology (No. 2009zm0178)the Small Project Funding of HKU from HKU SPACE Research Fund (No.201007176165)
文摘This paper considers the optimal model reduction problem of matrix second-order linear systems in the sense of Hilbert-Schmidt-Hankel norm, with the reduced order systems preserving the structure of the original systems. The expressions of the error function and its gradient are derived. Two numerical examples are given to illustrate the presented model reduction technique.
基金This work is supported by National Key Basic Research Special Fundation of China(No.G1998020309)National Natural Science Foundation of China(No.10461002)Science Foundation of Guangxi Province of China (No.0236012) 34A30,34C10
文摘By using the Riccati technique and the technique, new oscillation criteriaare obtained for the second order matrix differential system (P(t)Y'(t))' + r(t)P(t)Y(t) + Q(t)Y (t)= 0, t ≥ t_0. These results in the present paper generalize and improve many known conclusions.Furthermore, some results are different from the most known ones in the sense that they are based onthe information only on a sequence of subintervals of [t 0,), rather than on the whole half–line.In particular, our results complement a number of existing results and handle the case that is notcovered by the known criteria.