A new method for the construction of bivariate matrix valued rational interpolants on a rectangulargrid is introduced. The rational interpolants are expressed in the continued fraction form with scalardenominator. Til...A new method for the construction of bivariate matrix valued rational interpolants on a rectangulargrid is introduced. The rational interpolants are expressed in the continued fraction form with scalardenominator. Tile matrix quotients are based oil the generalized inverse for a matrix, Which is found to beeffective in continued fraction interpolation. In this paper, tWo dual expansions for bivariate matrix valuedThiele-type interpolating continued fractions are presented, then, tWo dual rational interpolants are definedout of them.展开更多
A recursive rational algorithm for matrix exponentials was obtained by making use of the generalized inverse of a matrix in this paper. On the basis of the n th convergence of Thiele type continued fraction expa...A recursive rational algorithm for matrix exponentials was obtained by making use of the generalized inverse of a matrix in this paper. On the basis of the n th convergence of Thiele type continued fraction expansion, a new type of the generalized inverse matrix valued Padé approximant (GMPA) for matrix exponentials was defined and its remainder formula was proved. The results of this paper were illustrated by some examples.展开更多
In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem is provided by using a generalized inverse of matrices. In order to reduce the continued fracti...In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem is provided by using a generalized inverse of matrices. In order to reduce the continued fraction form to rational function form of the interpolants, an efficient forward recurrence algorithm is obtained.展开更多
In this paper, a three dimensional matrix valued rational interpolant (TGMRI) is first constructed by making use of the generalized inverse of matrices. The interpolants are of the Thiele type branched continued fra...In this paper, a three dimensional matrix valued rational interpolant (TGMRI) is first constructed by making use of the generalized inverse of matrices. The interpolants are of the Thiele type branched continued fraction form, with matrix numerator and scalar denominator. Some properties of TGMRI are given. An efficient recursive algorithm is proposed. The results in the paper can be extend to n variable.展开更多
Let ξ be an irrational number with simple continued fraction expansion ξ = [a0;a1,··· ,ai,···] and pi be its ith convergent. Let Ci be de?ned by ξ ? pi = (?1)i/(Ciqiqi ). The qi qi +1 ...Let ξ be an irrational number with simple continued fraction expansion ξ = [a0;a1,··· ,ai,···] and pi be its ith convergent. Let Ci be de?ned by ξ ? pi = (?1)i/(Ciqiqi ). The qi qi +1 author proves the following theorem: Theorem. Let r > 1,R > 1 be two real numbers and q L = 1 + 1 + anan rR, K = 1 L + L2 ? 4 . r?1 R?1 +1 2 (r?1)(R?1) Then (i) Cn < r, Cn < R imply Cn > K; ?2 ?1 (ii) Cn > r, Cn > R imply Cn < K. ?2 ?1 This theorem generalizes the main result in [1].展开更多
文摘A new method for the construction of bivariate matrix valued rational interpolants on a rectangulargrid is introduced. The rational interpolants are expressed in the continued fraction form with scalardenominator. Tile matrix quotients are based oil the generalized inverse for a matrix, Which is found to beeffective in continued fraction interpolation. In this paper, tWo dual expansions for bivariate matrix valuedThiele-type interpolating continued fractions are presented, then, tWo dual rational interpolants are definedout of them.
文摘A recursive rational algorithm for matrix exponentials was obtained by making use of the generalized inverse of a matrix in this paper. On the basis of the n th convergence of Thiele type continued fraction expansion, a new type of the generalized inverse matrix valued Padé approximant (GMPA) for matrix exponentials was defined and its remainder formula was proved. The results of this paper were illustrated by some examples.
文摘In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem is provided by using a generalized inverse of matrices. In order to reduce the continued fraction form to rational function form of the interpolants, an efficient forward recurrence algorithm is obtained.
文摘In this paper, a three dimensional matrix valued rational interpolant (TGMRI) is first constructed by making use of the generalized inverse of matrices. The interpolants are of the Thiele type branched continued fraction form, with matrix numerator and scalar denominator. Some properties of TGMRI are given. An efficient recursive algorithm is proposed. The results in the paper can be extend to n variable.
基金Supported by the Natural Science Foundation of China (10771059)the Natural Science Foundation of Hunan Province(05JJ10001)Program for the New Century Excellent Talents in University (04 -0783)
文摘Let ξ be an irrational number with simple continued fraction expansion ξ = [a0;a1,··· ,ai,···] and pi be its ith convergent. Let Ci be de?ned by ξ ? pi = (?1)i/(Ciqiqi ). The qi qi +1 author proves the following theorem: Theorem. Let r > 1,R > 1 be two real numbers and q L = 1 + 1 + anan rR, K = 1 L + L2 ? 4 . r?1 R?1 +1 2 (r?1)(R?1) Then (i) Cn < r, Cn < R imply Cn > K; ?2 ?1 (ii) Cn > r, Cn > R imply Cn < K. ?2 ?1 This theorem generalizes the main result in [1].