In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem is provided by using a generalized inverse of matrices. In order to reduce the continued fracti...In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem is provided by using a generalized inverse of matrices. In order to reduce the continued fraction form to rational function form of the interpolants, an efficient forward recurrence algorithm is obtained.展开更多
A variety of matrix rational interpolation problems include the partial realizationproblem for matrix power series and the minimal rational interpolation problem for generalmatrix functions.Several problems in circuit...A variety of matrix rational interpolation problems include the partial realizationproblem for matrix power series and the minimal rational interpolation problem for generalmatrix functions.Several problems in circuit theory and digital filter design can also be re-duced to the solution of matrix rational interpolation problems[1—4].By means of thereachability and the observability indices of defined pairs of matrices,Antoulas,Ball,Kang and Willems solved the minimal matrix rational interpolation problem in[1].On展开更多
A new method for the construction of bivariate matrix valued rational interpolants on a rectangulargrid is introduced. The rational interpolants are expressed in the continued fraction form with scalardenominator. Til...A new method for the construction of bivariate matrix valued rational interpolants on a rectangulargrid is introduced. The rational interpolants are expressed in the continued fraction form with scalardenominator. Tile matrix quotients are based oil the generalized inverse for a matrix, Which is found to beeffective in continued fraction interpolation. In this paper, tWo dual expansions for bivariate matrix valuedThiele-type interpolating continued fractions are presented, then, tWo dual rational interpolants are definedout of them.展开更多
文摘In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem is provided by using a generalized inverse of matrices. In order to reduce the continued fraction form to rational function form of the interpolants, an efficient forward recurrence algorithm is obtained.
基金The works is supported by the National Natural Science Foundation of China(19871054)
文摘A variety of matrix rational interpolation problems include the partial realizationproblem for matrix power series and the minimal rational interpolation problem for generalmatrix functions.Several problems in circuit theory and digital filter design can also be re-duced to the solution of matrix rational interpolation problems[1—4].By means of thereachability and the observability indices of defined pairs of matrices,Antoulas,Ball,Kang and Willems solved the minimal matrix rational interpolation problem in[1].On
文摘A new method for the construction of bivariate matrix valued rational interpolants on a rectangulargrid is introduced. The rational interpolants are expressed in the continued fraction form with scalardenominator. Tile matrix quotients are based oil the generalized inverse for a matrix, Which is found to beeffective in continued fraction interpolation. In this paper, tWo dual expansions for bivariate matrix valuedThiele-type interpolating continued fractions are presented, then, tWo dual rational interpolants are definedout of them.