As one of the most essential and important operations in linear algebra, the performance prediction of sparse matrix-vector multiplication (SpMV) on GPUs has got more and more attention in recent years. In 2012, Guo a...As one of the most essential and important operations in linear algebra, the performance prediction of sparse matrix-vector multiplication (SpMV) on GPUs has got more and more attention in recent years. In 2012, Guo and Wang put forward a new idea to predict the performance of SpMV on GPUs. However, they didn’t consider the matrix structure completely, so the execution time predicted by their model tends to be inaccurate for general sparse matrix. To address this problem, we proposed two new similar models, which take into account the structure of the matrices and make the performance prediction model more accurate. In addition, we predict the execution time of SpMV for CSR-V, CSR-S, ELL and JAD sparse matrix storage formats by the new models on the CUDA platform. Our experimental results show that the accuracy of prediction by our models is 1.69 times better than Guo and Wang’s model on average for most general matrices.展开更多
针对传统的自适应波束形成算法在目标导向矢量失配及接收数据的协方差矩阵存在误差时,性能急剧下降的问题,提出了一种基于小快拍场景的联合协方差矩阵重构,及导向矢量优化的稳健波束形成算法。对不确定集约束求解得到干扰导向矢量,根据...针对传统的自适应波束形成算法在目标导向矢量失配及接收数据的协方差矩阵存在误差时,性能急剧下降的问题,提出了一种基于小快拍场景的联合协方差矩阵重构,及导向矢量优化的稳健波束形成算法。对不确定集约束求解得到干扰导向矢量,根据稀疏干扰来向的导向矢量近似正交,求出干扰导向矢量对应的干扰功率,从而完成协方差矩阵重构;对期望信号来向及其邻域进行权值求解,对加权后的数据特征分解,利用多信号分类(Multiple Signal Classification, MUSIC)谱估计算法对信号区域积分得到信号协方差矩阵,将其主特征值近似为期望信号的导向矢量完成重新估计。仿真结果表明,在无误差时,算法输出信干噪比(Signal to Interference Plus Noise Ratio, SINR)接近理论最优;在多种误差环境下输出性能随信噪比(Signal to Noise Ratio, SNR)的变化均具有较好的稳健性,并且在信号来向可精准形成波束;在小快拍时可以较快收敛至理论最优值。展开更多
文摘As one of the most essential and important operations in linear algebra, the performance prediction of sparse matrix-vector multiplication (SpMV) on GPUs has got more and more attention in recent years. In 2012, Guo and Wang put forward a new idea to predict the performance of SpMV on GPUs. However, they didn’t consider the matrix structure completely, so the execution time predicted by their model tends to be inaccurate for general sparse matrix. To address this problem, we proposed two new similar models, which take into account the structure of the matrices and make the performance prediction model more accurate. In addition, we predict the execution time of SpMV for CSR-V, CSR-S, ELL and JAD sparse matrix storage formats by the new models on the CUDA platform. Our experimental results show that the accuracy of prediction by our models is 1.69 times better than Guo and Wang’s model on average for most general matrices.
文摘针对传统的自适应波束形成算法在目标导向矢量失配及接收数据的协方差矩阵存在误差时,性能急剧下降的问题,提出了一种基于小快拍场景的联合协方差矩阵重构,及导向矢量优化的稳健波束形成算法。对不确定集约束求解得到干扰导向矢量,根据稀疏干扰来向的导向矢量近似正交,求出干扰导向矢量对应的干扰功率,从而完成协方差矩阵重构;对期望信号来向及其邻域进行权值求解,对加权后的数据特征分解,利用多信号分类(Multiple Signal Classification, MUSIC)谱估计算法对信号区域积分得到信号协方差矩阵,将其主特征值近似为期望信号的导向矢量完成重新估计。仿真结果表明,在无误差时,算法输出信干噪比(Signal to Interference Plus Noise Ratio, SINR)接近理论最优;在多种误差环境下输出性能随信噪比(Signal to Noise Ratio, SNR)的变化均具有较好的稳健性,并且在信号来向可精准形成波束;在小快拍时可以较快收敛至理论最优值。