Minor self conjugate (msc) and skewpositive semidefinite (ssd) solutions to the system of matrix equations over skew fields [A mn X nn =A mn ,B sn X nn =O sn ] are considered. Necessary and su...Minor self conjugate (msc) and skewpositive semidefinite (ssd) solutions to the system of matrix equations over skew fields [A mn X nn =A mn ,B sn X nn =O sn ] are considered. Necessary and sufficient conditions for the existence of and the expressions for the msc solutions and the ssd solutions are obtained for the system.展开更多
This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution ar...This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution are given.And also someoptimal approximation solutions are discussed.展开更多
Let A and C denote real n × n matrices. Given real n-vectors x1,……… ,xm,m≤n,and a set of numbers (L)={λ1,λ2…λm},We descrbe(Ⅰ)the set( ) of all real n × n bisymmetric positive seidefinite matrices A...Let A and C denote real n × n matrices. Given real n-vectors x1,……… ,xm,m≤n,and a set of numbers (L)={λ1,λ2…λm},We descrbe(Ⅰ)the set( ) of all real n × n bisymmetric positive seidefinite matrices A such that Axi is the "best"approximate to λixi, i = 1, 2,..., m in Frobenius norm and (Ⅱ) the Y in set ( )which minimize Frobenius norm of ||C - Y||.An existence theorem of the solutions for Problem Ⅰ and Problem Ⅱ is given andthe general expression of solutions for Problem Ⅰ is derived. Some sufficient conditionsunder which Problem Ⅰ and Problem Ⅱ have an explicit solution is provided. A numer-ical algorithm of the solution for Problem Ⅱ has been presented.展开更多
In this paper, we consider the positive semidefinite solution of the matrix equation (AT X A, BT X B) - (C, D). A necessary and sufficient condition for the existence of such solution is derived using the generalized ...In this paper, we consider the positive semidefinite solution of the matrix equation (AT X A, BT X B) - (C, D). A necessary and sufficient condition for the existence of such solution is derived using the generalized singular value decomposition.The general forms of positive semidefinite solution are given.展开更多
For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 30...For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 305-311]obtained the estimated inequality as follows det(A o B)≥a11b11 nⅡk=2(bkk detAk/detAk-1+detBk/detBk-1(k-1Ei=1 aikaki/aii))=Ln(A,B),where Ak is kth order sequential principal sub-matrix of A. We establish an improved lower bound of the form Yn(A,B)=a11baa nⅡk=2(bkk detAk/detAk-1+akk detBk/detBk-1-detAdetBk/detak-1detBk-1)≥Ln(A,B).For more weaker and practical lower bound, Liu given thatdet(A o B)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB(nⅡk=2 k-1Ei=1 aikaki/aiiakk)=(L)n(A,B).We further improve it as Yn(A,B)=(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)+max1≤k≤n wn(A,B,k)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)≥(L)n(A,B).展开更多
Censider the solutions of the matrix inverse problem, which are symmetric positive semide finite on a subspace. Necessary and sufficient conditions for the solvability, as well as the general solution are obtained. Th...Censider the solutions of the matrix inverse problem, which are symmetric positive semide finite on a subspace. Necessary and sufficient conditions for the solvability, as well as the general solution are obtained. The best approximate solution by the above solution set is given. Thus the open problem in [1] is solved.展开更多
The symmetric,positive semidefinite,and positive definite real solutions of the matrix equation XA=YAD from an inverse problem of vibration theory are considered.When D=T the necessary and sufficient conditions fo...The symmetric,positive semidefinite,and positive definite real solutions of the matrix equation XA=YAD from an inverse problem of vibration theory are considered.When D=T the necessary and sufficient conditions for the existence of such solutions and their general forms are derived.展开更多
This paper is mainly concerned with solving the following two problems: Problem Ⅰ. Given X ∈ Rn×m, B . Rm×m. Find A ∈ Pn such thatwhereProblem Ⅱ. Given A ∈Rn×n. Find A ∈ SE such thatwhere F is Fro...This paper is mainly concerned with solving the following two problems: Problem Ⅰ. Given X ∈ Rn×m, B . Rm×m. Find A ∈ Pn such thatwhereProblem Ⅱ. Given A ∈Rn×n. Find A ∈ SE such thatwhere F is Frobenius norm, and SE denotes the solution set of Problem I.The general solution of Problem I has been given. It is proved that there exists a unique solution for Problem II. The expression of this solution for corresponding Problem II for some special case will be derived.展开更多
文摘Minor self conjugate (msc) and skewpositive semidefinite (ssd) solutions to the system of matrix equations over skew fields [A mn X nn =A mn ,B sn X nn =O sn ] are considered. Necessary and sufficient conditions for the existence of and the expressions for the msc solutions and the ssd solutions are obtained for the system.
基金This work was supposed by the National Nature Science Foundation of China
文摘This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution are given.And also someoptimal approximation solutions are discussed.
基金Suported by National Nature Science Foundation of China
文摘Let A and C denote real n × n matrices. Given real n-vectors x1,……… ,xm,m≤n,and a set of numbers (L)={λ1,λ2…λm},We descrbe(Ⅰ)the set( ) of all real n × n bisymmetric positive seidefinite matrices A such that Axi is the "best"approximate to λixi, i = 1, 2,..., m in Frobenius norm and (Ⅱ) the Y in set ( )which minimize Frobenius norm of ||C - Y||.An existence theorem of the solutions for Problem Ⅰ and Problem Ⅱ is given andthe general expression of solutions for Problem Ⅰ is derived. Some sufficient conditionsunder which Problem Ⅰ and Problem Ⅱ have an explicit solution is provided. A numer-ical algorithm of the solution for Problem Ⅱ has been presented.
基金Partially supported by the National Natural Science Foundation of China(No10071035) and the Doctor Foundation of Hunan Normal University.
文摘In this paper, we consider the positive semidefinite solution of the matrix equation (AT X A, BT X B) - (C, D). A necessary and sufficient condition for the existence of such solution is derived using the generalized singular value decomposition.The general forms of positive semidefinite solution are given.
文摘For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 305-311]obtained the estimated inequality as follows det(A o B)≥a11b11 nⅡk=2(bkk detAk/detAk-1+detBk/detBk-1(k-1Ei=1 aikaki/aii))=Ln(A,B),where Ak is kth order sequential principal sub-matrix of A. We establish an improved lower bound of the form Yn(A,B)=a11baa nⅡk=2(bkk detAk/detAk-1+akk detBk/detBk-1-detAdetBk/detak-1detBk-1)≥Ln(A,B).For more weaker and practical lower bound, Liu given thatdet(A o B)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB(nⅡk=2 k-1Ei=1 aikaki/aiiakk)=(L)n(A,B).We further improve it as Yn(A,B)=(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)+max1≤k≤n wn(A,B,k)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)≥(L)n(A,B).
文摘Censider the solutions of the matrix inverse problem, which are symmetric positive semide finite on a subspace. Necessary and sufficient conditions for the solvability, as well as the general solution are obtained. The best approximate solution by the above solution set is given. Thus the open problem in [1] is solved.
文摘The symmetric,positive semidefinite,and positive definite real solutions of the matrix equation XA=YAD from an inverse problem of vibration theory are considered.When D=T the necessary and sufficient conditions for the existence of such solutions and their general forms are derived.
基金Supported by the National Nature Science Fundation of China.
文摘This paper is mainly concerned with solving the following two problems: Problem Ⅰ. Given X ∈ Rn×m, B . Rm×m. Find A ∈ Pn such thatwhereProblem Ⅱ. Given A ∈Rn×n. Find A ∈ SE such thatwhere F is Frobenius norm, and SE denotes the solution set of Problem I.The general solution of Problem I has been given. It is proved that there exists a unique solution for Problem II. The expression of this solution for corresponding Problem II for some special case will be derived.