期刊文献+
共找到18,871篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical Methods for a Class of Quadratic Matrix Equations
1
作者 GUAN Jinrui WANG Zhixin SHAO Rongxia 《应用数学》 北大核心 2024年第4期962-970,共9页
Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of... Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper. 展开更多
关键词 Quadratic matrix equation M-MATRIX Minimal nonnegative solution Newton method Bernoulli method
下载PDF
Analysis of Extended Fisher-Kolmogorov Equation in 2D Utilizing the Generalized Finite Difference Method with Supplementary Nodes
2
作者 Bingrui Ju Wenxiang Sun +1 位作者 Wenzhen Qu Yan Gu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期267-280,共14页
In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso... In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem. 展开更多
关键词 Generalized finite difference method nonlinear extended Fisher-Kolmogorov equation Crank-Nicolson scheme
下载PDF
A new approach for pseudo hyperbolic partial differential equations with nonLocal conditions using Laplace Adomian decomposition method
3
作者 Mahmut Modanli Sadeq Taha Abdulazeez Ahmad Muhamad Husien 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第4期750-758,共9页
This paper provides a nonlinear pseudo-hyperbolic partial differential equation with non-local conditions.Despite the importance of this problem,the exact solution to this problem is rare in the literature.Therefore,t... This paper provides a nonlinear pseudo-hyperbolic partial differential equation with non-local conditions.Despite the importance of this problem,the exact solution to this problem is rare in the literature.Therefore,the Laplace-Adomian Decomposition Method(LADM)is used to provide a new approach to solving this problem.Additionally,we give a comparison between the exact and approximate solutions at various points with absolute error.The obtained result showed that the proposed method is effective and accurate for this problem and can be used for many other evolution of nonlinear equations in mathematical physics. 展开更多
关键词 pseudo hyperbolic equations nonlocal conditions Laplace-Adomian decomposition method Approximate solutions
下载PDF
Numerical Investigations on the Resonance Errors of Multiscale Discontinuous Galerkin Methods for One-Dimensional Stationary Schrödinger Equation
4
作者 Bo Dong Wei Wang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期311-324,共14页
In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al... In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers. 展开更多
关键词 Discontinuous Galerkin(DG)method Multiscale method Resonance errors One-dimensional Schrödinger equation
下载PDF
An Extended Numerical Method by Stancu Polynomials for Solution of Integro-Differential Equations Arising in Oscillating Magnetic Fields
5
作者 Neşe İşler Acar 《Advances in Pure Mathematics》 2024年第10期785-796,共12页
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b... In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method. 展开更多
关键词 Stancu Polynomials Collocation method Integro-Differential equations Linear equation Systems Matrix equations
下载PDF
Two-Stream Approximation to the Radiative Transfer Equation:A New Improvement and Comparative Accuracy with Existing Methods
6
作者 F.Momo TEMGOUA L.Akana NGUIMDO DNJOMO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期278-292,共15页
Mathematical modeling of the interaction between solar radiation and the Earth's atmosphere is formalized by the radiative transfer equation(RTE), whose resolution calls for two-stream approximations among other m... Mathematical modeling of the interaction between solar radiation and the Earth's atmosphere is formalized by the radiative transfer equation(RTE), whose resolution calls for two-stream approximations among other methods. This paper proposes a new two-stream approximation of the RTE with the development of the phase function and the intensity into a third-order series of Legendre polynomials. This new approach, which adds one more term in the expression of the intensity and the phase function, allows in the conditions of a plane parallel atmosphere a new mathematical formulation of γparameters. It is then compared to the Eddington, Hemispheric Constant, Quadrature, Combined Delta Function and Modified Eddington, and second-order approximation methods with reference to the Discrete Ordinate(Disort) method(δ –128 streams), considered as the most precise. This work also determines the conversion function of the proposed New Method using the fundamental definition of two-stream approximation(F-TSA) developed in a previous work. Notably,New Method has generally better precision compared to the second-order approximation and Hemispheric Constant methods. Compared to the Quadrature and Eddington methods, New Method shows very good precision for wide domains of the zenith angle μ 0, but tends to deviate from the Disort method with the zenith angle, especially for high values of optical thickness. In spite of this divergence in reflectance for high values of optical thickness, very strong correlation with the Disort method(R ≈ 1) was obtained for most cases of optical thickness in this study. An analysis of the Legendre polynomial series for simple functions shows that the high precision is due to the fact that the approximated functions ameliorate the accuracy when the order of approximation increases, although it has been proven that there is a limit order depending on the function from which the precision is lost. This observation indicates that increasing the order of approximation of the phase function of the RTE leads to a better precision in flux calculations. However, this approach may be limited to a certain order that has not been studied in this paper. 展开更多
关键词 Radiative Transfer equation two-stream method Legendre polynomial optical thickness moments of specific intensity conversion function TRANSMITTANCE reflectance
下载PDF
Euler’s First-Order Explicit Method–Peridynamic Differential Operator for Solving Population Balance Equations of the Crystallization Process
7
作者 Chunlei Ruan Cengceng Dong +2 位作者 Kunfeng Liang Zhijun Liu Xinru Bao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期3033-3049,共17页
Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna... Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed. 展开更多
关键词 Population balance equation CRYSTALLIZATION peridynamic differential operator Euler’s first-order explicit method
下载PDF
An adaptive finite-difference method for seismic traveltime modeling based on 3D eikonal equation
8
作者 Bao-Ping Qiao Qing-Qing Li +2 位作者 Wei-Guang He Dan Zhao Qu-Bo Wu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期195-205,共11页
3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic m... 3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications. 展开更多
关键词 3D eikonal equation Accurate traveltimes Global fast sweeping 3D inhomogeneous media Adaptive finite-difference method
下载PDF
Energy Stable Nodal DG Methods for Maxwell’s Equations of Mixed-Order Form in Nonlinear Optical Media
9
作者 Maohui Lyu Vrushali A.Bokil +1 位作者 Yingda Cheng Fengyan Li 《Communications on Applied Mathematics and Computation》 EI 2024年第1期30-63,共34页
In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic ... In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic Kerr response,and the nonlinear delayed Raman molecular vibrational response.Unlike the first-order PDE-ODE governing equations considered previously in Bokil et al.(J Comput Phys 350:420–452,2017)and Lyu et al.(J Sci Comput 89:1–42,2021),a model of mixed-order form is adopted here that consists of the first-order PDE part for Maxwell’s equations coupled with the second-order ODE part(i.e.,the auxiliary differential equations)modeling the linear and nonlinear dispersion in the material.The main contribution is a new numerical strategy to treat the Kerr and Raman nonlinearities to achieve provable energy stability property within a second-order temporal discretization.A nodal discontinuous Galerkin(DG)method is further applied in space for efficiently handling nonlinear terms at the algebraic level,while preserving the energy stability and achieving high-order accuracy.Indeed with d_(E)as the number of the components of the electric field,only a d_(E)×d_(E)nonlinear algebraic system needs to be solved at each interpolation node,and more importantly,all these small nonlinear systems are completely decoupled over one time step,rendering very high parallel efficiency.We evaluate the proposed schemes by comparing them with the methods in Bokil et al.(2017)and Lyu et al.(2021)(implemented in nodal form)regarding the accuracy,computational efficiency,and energy stability,by a parallel scalability study,and also through the simulations of the soliton-like wave propagation in one dimension,as well as the spatial-soliton propagation and two-beam interactions modeled by the two-dimensional transverse electric(TE)mode of the equations. 展开更多
关键词 Maxwell’s equations Kerr and Raman Discontinuous Galerkin method Energy stability
下载PDF
A Provable Positivity-Preserving Local Discontinuous Galerkin Method for the Viscous and Resistive MHD Equations
10
作者 Mengjiao Jiao Yan Jiang Mengping Zhang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期279-310,共32页
In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the diver... In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes. 展开更多
关键词 Viscous and resistive MHD equations Positivity-preserving Discontinuous Galerkin(DG)method High order accuracy
下载PDF
Stability and Time-Step Constraints of Implicit-Explicit Runge-Kutta Methods for the Linearized Korteweg-de Vries Equation
11
作者 Joseph Hunter Zheng Sun Yulong Xing 《Communications on Applied Mathematics and Computation》 EI 2024年第1期658-687,共30页
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either... This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints. 展开更多
关键词 Linearized Korteweg-de Vries(KdV)equation Implicit-explicit(IMEX)Runge-Kutta(RK)method STABILITY Courant-Friedrichs-Lewy(CFL)condition Finite difference(FD)method Local discontinuous Galerkin(DG)method
下载PDF
Factorized Smith Method for A Class of High-Ranked Large-Scale T-Stein Equations
12
作者 LI Xiang YU Bo TANG Qiong 《Chinese Quarterly Journal of Mathematics》 2024年第3期235-249,共15页
We introduce a factorized Smith method(FSM)for solving large-scale highranked T-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requi... We introduce a factorized Smith method(FSM)for solving large-scale highranked T-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requirements,we develop techniques including deflation and shift,partial truncation and compression,as well as redesign the residual computation and termination condition.Numerical examples demonstrate that the FSM outperforms the Smith method implemented with a hierarchical HODLR structured toolkit in terms of CPU time. 展开更多
关键词 Large-scale T-Stein equations High-ranked Deflation and shift Partially truncation and compression Smith method
下载PDF
Comparative Studies between Picard’s and Taylor’s Methods of Numerical Solutions of First Ordinary Order Differential Equations Arising from Real-Life Problems
13
作者 Khalid Abd Elrazig Awad Alla Elnour 《Journal of Applied Mathematics and Physics》 2024年第3期877-896,共20页
To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’... To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section. 展开更多
关键词 First-Order Differential equations Picard method Taylor Series method Numerical Solutions Numerical Examples MATLAB Software
下载PDF
The Alternating Group Explicit Iterative Method for the Regularized Long-Wave Equation
14
作者 Anqi Xie Xiaojia Ye Guanyu Xue 《Journal of Applied Mathematics and Physics》 2024年第1期52-59,共8页
An Alternating Group Explicit (AGE) iterative method with intrinsic parallelism is constructed based on an implicit scheme for the Regularized Long-Wave (RLW) equation. The method can be used for the iteration solutio... An Alternating Group Explicit (AGE) iterative method with intrinsic parallelism is constructed based on an implicit scheme for the Regularized Long-Wave (RLW) equation. The method can be used for the iteration solution of a general tridiagonal system of equations with diagonal dominance. It is not only easy to implement, but also can directly carry out parallel computation. Convergence results are obtained by analysing the linear system. Numerical experiments show that the theory is accurate and the scheme is valid and reliable. 展开更多
关键词 RLW equation AGE Iterative method PARALLELISM CONVERGENCE
下载PDF
A Full Predictor-Corrector Finite Element Method for the One-Dimensional Heat Equation with Time-Dependent Singularities
15
作者 Jake L. Nkeck 《Journal of Applied Mathematics and Physics》 2024年第4期1364-1382,共19页
The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent ... The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method. 展开更多
关键词 SINGULARITIES Finite Element methods Heat equation Predictor-Corrector Algorithm
下载PDF
Legendre-Weighted Residual Methods for System of Fractional Order Differential Equations
16
作者 Umme Ruman Md. Shafiqul Islam 《Journal of Applied Mathematics and Physics》 2024年第9期3163-3184,共22页
The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ... The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations. 展开更多
关键词 Fractional Differential equations System of Fractional Order BVPs Weighted Residual methods Modified Legendre Polynomials
下载PDF
Solving Navier-Stokes equation by mixed interpolation method 被引量:1
17
作者 万水 Mogens Peter Nielsen 《Journal of Southeast University(English Edition)》 EI CAS 2006年第1期93-95,共3页
The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; a... The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; and the finite element equation is established. The velocity field in the element is described by the shape function of the isoparametric element with nine nodes and the pressure field is described by the interpolation function of the four nodes at the vertex of the isoparametric element with nine nodes. The subroutine of the element and the integrated finite element code are generated by the Finite Element Program Generator (FEPG) successfully. The numerical simulation about the incompressible viscous liquid flowing over a cylinder is carded out. The solution agrees with the experimental results very well. 展开更多
关键词 Navier-Stokes equation finite element method incompressible viscous flow mixed interpolation method
下载PDF
New algorithm for solving 3D incompressible viscous equations based on projection method
18
作者 牛晓峰 梁伟 +4 位作者 赵宇宏 侯华 穆彦青 黄志伟 杨伟明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第8期1826-1832,共7页
A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions a... A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method. 展开更多
关键词 implicit finite difference method 3D incompressible viscous equations projection method nonparametric statistics
下载PDF
LOW MACH NUMBER FLOW COMPUTATION USING PRECONDITIONING METHODS AND COMPRESSIBLE NAVIER-STOKES EQUATIONS
19
作者 刘学强 李青 +1 位作者 柴建忠 伍贻兆 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第4期271-275,共5页
The preconditioning method is used to solve the low Mach number flow. The space discritisation scheme is the Roe scheme and the DES turbulence model is used. Then, the low Mach number turbulence flow around the NACA00... The preconditioning method is used to solve the low Mach number flow. The space discritisation scheme is the Roe scheme and the DES turbulence model is used. Then, the low Mach number turbulence flow around the NACA0012 airfoil is used to verify the efficiency of the proposed method. Two cases of the low Mach number flows around the multi-element airfoil and the circular cylinder are also used to test the proposed method. Numerical results show that the methods combined the preconditioning method and compressible Navier-Stokes equations are efficient to solve low Mach number flows. 展开更多
关键词 Navier-Stokes equations preconditioning method turbulence model
下载PDF
3D elastic wave equation forward modeling based on the precise integration method 被引量:1
20
作者 段玉婷 胡天跃 +1 位作者 姚逢昌 张研 《Applied Geophysics》 SCIE CSCD 2013年第1期71-78,118,119,共10页
The Finite Difference (FD) method is an important method for seismic numerical simulations. It helps us understand regular patterns in seismic wave propagation, analyze seismic attributes, and interpret seismic data... The Finite Difference (FD) method is an important method for seismic numerical simulations. It helps us understand regular patterns in seismic wave propagation, analyze seismic attributes, and interpret seismic data. However, because of its discretization, the FD method is only stable under certain conditions. The Arbitrary Difference Precise Integration (ADPI) method is based on the FD method and adopts an integration scheme in the time domain and an arbitrary difference scheme in the space domain. Therefore, the ADPI method is a semi-analytical method. In this paper, we deduce the formula for the ADPI method based on the 3D elastic equation and improve its stability. In forward modeling cases, the ADPI method was implemented in 2D and 3D elastic wave equation forward modeling. Results show that the travel time of the reflected seismic wave is accurate. Compared with the acoustic wave field, the elastic wave field contains more wave types, including PS- and PP- reflected waves, transmitted waves, and diffracted waves, which is important to interpretation of seismic data. The method can be easily applied to elastic wave equation numerical simulations for eoloical models. 展开更多
关键词 Arbitrary difference precise integration method elastic waves wave equation seismic numerical simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部