期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
高光谱图像的线性张量子空间模型及降噪应用 被引量:1
1
作者 龙珍 刘翼鹏 +4 位作者 苟艺馨 曾思行 刘佳妮 文飞 朱策 《中国图象图形学报》 CSCD 北大核心 2023年第8期2505-2521,共17页
目的与标准RGB图像相比,高光谱图像(hyperspectral image,HSI)具有更为精细的光谱划分,这一特点可以为后续的图像分析处理带来更好的性能。然而在采集过程中,HSI可能会受到严重的噪声污染,比如高斯噪声、脉冲噪声、条纹噪声和死线噪声... 目的与标准RGB图像相比,高光谱图像(hyperspectral image,HSI)具有更为精细的光谱划分,这一特点可以为后续的图像分析处理带来更好的性能。然而在采集过程中,HSI可能会受到严重的噪声污染,比如高斯噪声、脉冲噪声、条纹噪声和死线噪声。受到污染的HSI在一定程度上会影响后续分析算法的性能,因此在进行图像分析处理之前,对采集到的HSI进行降噪是非常重要的。方法为了得到干净的HSI,本文提出了一种新的结构型张量分解算法,并将其应用于HSI降噪。该算法根据HSI的线性子空间模型,将干净的高光谱图像分解为矩阵向量外积的和,其中向量表示光谱的正交基,矩阵表示基对应的系数,即特征图像。考虑特征图像的低秩性,矩阵核范数算子被直接施加在特征图像上,这样既可以充分探索高光谱图像的全局信息,又可以避免对原始张量进行低秩约束所带来的计算负担。?1-范数和F-范数(Frobenius norm)最小化算子分别用来去除脉冲噪声、死线和条纹在内的稀疏噪声和一些现实场景中的高斯噪声。此外,为了提升图像恢复的质量,添加了各向异性全变分算子来探索高光谱图像的空间局部平滑属性。经典的交替方向乘子法用于求解所提出的低秩降噪模型。结果在2个模拟数据集和2个真实数据集上与最新的7种方法进行对比,其中,在具有脉冲噪声的模拟数据上,尤其在实验3和实验4的噪声环境下,相比于性能第2的模型,平均峰值信噪比增加了2.1 dB,无量纲全局相对综合误差降低了15.5%。同时,真实数据集中,在数据具有高斯、条纹和死线噪声的情况下,提出的降噪算法提高了HSI的空间分辨率。结论本文提出的HSI降噪模型考虑了HSI的线性张量子空间模型,在处理混合噪声时恢复性能更好,因此在应用于较为复杂的场景时具有显著优势。 展开更多
关键词 高光谱图像(HSI) 图像降噪 矩阵向量张量分解(mvtf) 全变分(TV) 线性子空间模型
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部