Fine nickel ferrite precursors NiFe2(C204)3·6H2O were obtained via co-precipitation method with low grade nickel matte as the raw material. Thermodynamic analysis of NiClz-FeC12-(NH4)2C204-H20 system for prec...Fine nickel ferrite precursors NiFe2(C204)3·6H2O were obtained via co-precipitation method with low grade nickel matte as the raw material. Thermodynamic analysis of NiClz-FeC12-(NH4)2C204-H20 system for precipitation identified that the theoretical optimum co-precipitation pH value is 2, and C2O2 has strong complexation with Ni2+ and Fe2+ ions. Based on these theoretical considerations, the effects of parameters on the precipitation rates and precursors size were investigated systematically. The results show that the optimum co-precipitation conditions are pH=2, temperature 45 ℃, 1.2 times theoretical amount of (NH4)2C204 dosage and 3% PEG400 addition. Under these conditions, the precipitation rates of Ni2+ and Fe2+ are both over 99.8%, with the precursors size of 1-2 urn. Furthermore, X-ray diffraction (XRD) and thermogravimetry-differential thermal analysis (TG-DTA) demonstrate that the precursors are single-phase solid solution, wherein the nickel/iron atoms are replaced by the iron/nickel atoms reciprocally.展开更多
In the newly developed oxygen-enriched bottom-blowing copper smelting process(also known as the SKS copper smelting process), Cu loss in slag is one of the most concerning issues. This paper presents our research resu...In the newly developed oxygen-enriched bottom-blowing copper smelting process(also known as the SKS copper smelting process), Cu loss in slag is one of the most concerning issues. This paper presents our research results concerning the relationship between the Cu content of the matte and slag in the SKS process; the results are based on actual industrial production in the Dongying Fangyuan copper smelter. The results show that the matte grade strongly influences Cu losses in slag. The dissolved and entrained losses account for 10%–20% and 80%–90% of the total SKS industrial Cu losses in slag, respectively. With increasing matte grade, the dissolved and entrained Cu losses in the SKS slag both increase continuously. When the matte grade is greater than 68%, the content of Cu in the smelting slag increases much more dramatically. To obtain a high direct recovery of copper, the matte grade should be less than 75% in industrial SKS copper production.展开更多
A calcified roasting-acid leaching process was developed as a highly effective method for the extraction of valuable metals from low nickel matte in the presence of CaO additive. The influences of process parameters o...A calcified roasting-acid leaching process was developed as a highly effective method for the extraction of valuable metals from low nickel matte in the presence of CaO additive. The influences of process parameters on the metal extraction were studied, including the roasting temperature, roasting time, addition of CaO, H2SO4 concentration and liquid-solid ratio. Under the optimum condition, 94.2% of Ni, 98.1% of Cu, 92.2% of Co and 89.3% of Fe were recovered. Additionally, 99.6% of Fe was removed from the leachate as goethite by a subsequent goethite iron precipitation process. The behavior and mechanism of CaO additive in the roasting process was clarified. The role of CaO is to prevent the formation of nonferrous metal ferrite phases by a preferential reaction with Fe2O3 during the roasting process. The metal oxides(Cu O and NixCu1-xO) remained stable during high-temperature roasting and were subsequently efficiently leached using a sulfuric acid solution.展开更多
This paper describes the structure and function of the intelligent decision support system (IDSS) on the process of nickel matte smelter. The knowledge and model base system based on fuzzy-decision rules ale specially...This paper describes the structure and function of the intelligent decision support system (IDSS) on the process of nickel matte smelter. The knowledge and model base system based on fuzzy-decision rules ale specially suggested. The IDSS possesses the self-learning and adaptive properties, andhas been used for managing and analyzing the production information, optimizing the composition of the charge mixture, and deciding the optimal operational conditions. Electric energy consumption has been reduced remarkably and the yield of nickel has been increased.展开更多
The leaching of low-sulfur Ni-Cu matte in acid-oxygen(CuSO4-H2SO4-O2)solution at atmospheric pressure was researched.This matte was obtained from high grade Ni-Cu matte by magnetic separation,which mainly contained Ni...The leaching of low-sulfur Ni-Cu matte in acid-oxygen(CuSO4-H2SO4-O2)solution at atmospheric pressure was researched.This matte was obtained from high grade Ni-Cu matte by magnetic separation,which mainly contained Ni-Cu alloy and a small quantity of sulfides.The effects of temperature,agitation speed,oxygen flow rate,particle size,acid concentration and concentration of copper ion were studied.It is found that the matte particles are leached by shrinking core mechanism and the leaching process is electrochemically controlled.In a temperature range of 30-60℃,the surface reaction is rate-limiting step,with an apparent activation energy of 41.9 kJ/mol.But at higher temperature(70-85℃),the rate process is controlled by diffusion through the product layer,with an apparent activation energy of 7.3 kJ/mol.展开更多
An adaptive chaotic gradient descending optimization algorithm for single objective optimization was presented. A local minimum judged by two rules was obtained by an improved mutative-step gradient descending method....An adaptive chaotic gradient descending optimization algorithm for single objective optimization was presented. A local minimum judged by two rules was obtained by an improved mutative-step gradient descending method. A new optimal minimum was obtained to replace the local minimum by mutative-scale chaotic search algorithm whose scales are magnified gradually from a small scale in order to escape local minima. The global optimal value was attained by repeatedly iterating. At last, a BP (back-propagation) neural network model for forecasting slag output in matte converting was established. The algorithm was used to train the weights of the BP neural network model. The simulation results with a training data set of 400 samples show that the training process can be finished within 300 steps to obtain the global optimal value, and escape local minima effectively. An optimization system for operation parameters, which includes the forecasting model, is achieved, in which the output of converter increases by 6.0%, and the amount of the treated cool materials rises by 7.8% in the matte converting process.展开更多
Environment matting and compositing is a technique to extract a foreground object, including color, opacity, reflec- tive and refractive properties, from a real-world scene, and synthesize new images by placing it int...Environment matting and compositing is a technique to extract a foreground object, including color, opacity, reflec- tive and refractive properties, from a real-world scene, and synthesize new images by placing it into new environments. The description of the captured object is named environment matte. Recent matting and compositing techniques can produce quite realistic images for objects with complex optical properties. This paper presents an approximate method to transform the matte by simulating variation of the foreground object’s refractive index. Our algorithms can deal with achromatous-and-transparent ob- jects and the experimental results are visually acceptable. Our idea and method can be applied to produce some special video effects, which could be very useful in film making, compared with the extreme difficulty of physically changing an object’s refractive index.展开更多
Due to the importance of detecting the matte grade in the copper flash smelting process, the mechanism model was established according to the multi-phase and multi-component mathematic model. Meanwhile this procedure ...Due to the importance of detecting the matte grade in the copper flash smelting process, the mechanism model was established according to the multi-phase and multi-component mathematic model. Meanwhile this procedure was a complicated production process with characteristics of large time delay, nonlinearity and so on. A fuzzy neural network model was set up through a great deal of production data. Besides a novel constrained gradient descent algorithm used to update the parameters was put forward to improve the parameters learning efficiency. Ultimately the self-adaptive combination technology was adopted to paralleled integrate two models in order to obtain the prediction model of the matte grade. Industrial data validation shows that the intelligently integrated model is more precise than a single model. It can not only predict the matte grade exactly but also provide optimal control of the copper flash smelting process with potent guidance.展开更多
Based on the facts that cations and anions of molten salts and binary basic oxide solid solutions do not separate from each other as well as that the electric conductivities of mattes are greater than that of salts an...Based on the facts that cations and anions of molten salts and binary basic oxide solid solutions do not separate from each other as well as that the electric conductivities of mattes are greater than that of salts and basic oxide solid solutions, the calculating models of mass action concentrations for binary and ternary mattes involving eutectic have been formulated. The results of calculation agree well with the values measured;this in turn shows that the calculating models can reftect the structural characteristics of the mattes concerned.展开更多
According to the chemical and phase composition of the nickel-copper-iron matte containing precious metals and the progress in enrichment of precious metals from the nickel-copper-iron matte containing precious metals...According to the chemical and phase composition of the nickel-copper-iron matte containing precious metals and the progress in enrichment of precious metals from the nickel-copper-iron matte containing precious metals at home and abroad, this paper put forward the process route of enrichment of precious metals and selectively leaching of base metals from the nickel-copper-iron matte by sulfuric acid and sodium hypochlorite. The effects of particle size, leaching temperature, leaching time, amount of sulfuric acid and sodium hypochlorite on the leaching rate of nickel, cobalt, copper and iron are mainly discussed. The results show that raw material particle size has significantly effects on the leaching rate of base metals, high leaching rate of base metals and enrichment of precious metals are obtained with the suitable particle size. Through the experiments, the reasonable experiment parameters and conditions were determined as fellows: particle size of-200 to +250 mesh, leaching temperature 95℃ , leaching time 5 h, sulfuric acid concentration 30%, adding amount of sodium hypochlorite 3 times of matte weight. Under these experiment parameters and conditions, the leaching rate of nickel, cobalt, copper and iron were 97.39%, 96.24%, 98.30% and 99.01%, respectively. The content of nickel, cobalt, copper, iron in the leaching residues was 8.15%, 0.23%, 1.40% and 0.24%, respectively. The content of Pt, Pd, Au, Ag and Rh in the leaching residues was 247 g/t, 521 g/t, 112 g/t, 494 g/t and 24 g/t, respectively. The content of Pt, Pd, Au, Ag and Rh in the leaching solution was <0.0005 g/L, 0.0023 g/L, 0.0007 g/L, <0.0005 g/L and 0.00017 g/L, respectively. This process has advantages as follows: a small investment, simple technology, high enrichment efficiency.展开更多
The interfacial tension between FeO-CaO-SiO_2-MgO system slag and Cu-Fe-S system matte was determinated by the X-ray radiograph sessile drop method.The effects of FeO/SiO_2 ratio in the slag,contents of CaO,FeO,ZnO an...The interfacial tension between FeO-CaO-SiO_2-MgO system slag and Cu-Fe-S system matte was determinated by the X-ray radiograph sessile drop method.The effects of FeO/SiO_2 ratio in the slag,contents of CaO,FeO,ZnO and CaF_2 in the slag on interracial tension and the relation of inter facial tension with the grade of matte and temperature have been studied.The floatation coefficient and film coefficient of slag-matte system has been calculated and the mechanism of the transition of iron and oxygen from slag to matte has also been discussed.展开更多
A process of the selective leaching of nickel from low-sulfur Ni-Cu matte at atmospheric pressure was described.This matte was obtained from high grade Ni-Cu matte by magnetic separation,which mainly contained Ni-Cu a...A process of the selective leaching of nickel from low-sulfur Ni-Cu matte at atmospheric pressure was described.This matte was obtained from high grade Ni-Cu matte by magnetic separation,which mainly contained Ni-Cu alloy and a small quantity of sulfides.Firstly,the acid-oxygen(CuSO4-H2SO4-O2)leaching of the matte was conducted at atmospheric pressure.When the solution pH value reached 1.0-2.0,the oxygen flow was ceased.Then,the aqueous copper was rejected by cementation reaction with Ni in the alloy.The mineralogical characteristics of the matte in the process were analyzed by X-ray diffractometry,optical microscopy and scanning electron microscopy.And the effects of variations in temperature,particle size distribution,oxygen flow rate,pulp density,initial acid concentration and initial concentration of copper ion were investigated.展开更多
基金Project(2012BAB10B04) supported by National Key Technology R&D Program of ChinaProject supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘Fine nickel ferrite precursors NiFe2(C204)3·6H2O were obtained via co-precipitation method with low grade nickel matte as the raw material. Thermodynamic analysis of NiClz-FeC12-(NH4)2C204-H20 system for precipitation identified that the theoretical optimum co-precipitation pH value is 2, and C2O2 has strong complexation with Ni2+ and Fe2+ ions. Based on these theoretical considerations, the effects of parameters on the precipitation rates and precursors size were investigated systematically. The results show that the optimum co-precipitation conditions are pH=2, temperature 45 ℃, 1.2 times theoretical amount of (NH4)2C204 dosage and 3% PEG400 addition. Under these conditions, the precipitation rates of Ni2+ and Fe2+ are both over 99.8%, with the precursors size of 1-2 urn. Furthermore, X-ray diffraction (XRD) and thermogravimetry-differential thermal analysis (TG-DTA) demonstrate that the precursors are single-phase solid solution, wherein the nickel/iron atoms are replaced by the iron/nickel atoms reciprocally.
基金financially supported by the National Natural Science Foundation of China (No. 51620105013)Dongying Fangyuan Nonferrous Metals Co., Ltd.
文摘In the newly developed oxygen-enriched bottom-blowing copper smelting process(also known as the SKS copper smelting process), Cu loss in slag is one of the most concerning issues. This paper presents our research results concerning the relationship between the Cu content of the matte and slag in the SKS process; the results are based on actual industrial production in the Dongying Fangyuan copper smelter. The results show that the matte grade strongly influences Cu losses in slag. The dissolved and entrained losses account for 10%–20% and 80%–90% of the total SKS industrial Cu losses in slag, respectively. With increasing matte grade, the dissolved and entrained Cu losses in the SKS slag both increase continuously. When the matte grade is greater than 68%, the content of Cu in the smelting slag increases much more dramatically. To obtain a high direct recovery of copper, the matte grade should be less than 75% in industrial SKS copper production.
基金Projects(U1860203,U1860108,51574164) supported by the National Natural Science Foundation of China
文摘A calcified roasting-acid leaching process was developed as a highly effective method for the extraction of valuable metals from low nickel matte in the presence of CaO additive. The influences of process parameters on the metal extraction were studied, including the roasting temperature, roasting time, addition of CaO, H2SO4 concentration and liquid-solid ratio. Under the optimum condition, 94.2% of Ni, 98.1% of Cu, 92.2% of Co and 89.3% of Fe were recovered. Additionally, 99.6% of Fe was removed from the leachate as goethite by a subsequent goethite iron precipitation process. The behavior and mechanism of CaO additive in the roasting process was clarified. The role of CaO is to prevent the formation of nonferrous metal ferrite phases by a preferential reaction with Fe2O3 during the roasting process. The metal oxides(Cu O and NixCu1-xO) remained stable during high-temperature roasting and were subsequently efficiently leached using a sulfuric acid solution.
文摘This paper describes the structure and function of the intelligent decision support system (IDSS) on the process of nickel matte smelter. The knowledge and model base system based on fuzzy-decision rules ale specially suggested. The IDSS possesses the self-learning and adaptive properties, andhas been used for managing and analyzing the production information, optimizing the composition of the charge mixture, and deciding the optimal operational conditions. Electric energy consumption has been reduced remarkably and the yield of nickel has been increased.
基金Project(50774020) supported by the National Natural Science Foundation of China
文摘The leaching of low-sulfur Ni-Cu matte in acid-oxygen(CuSO4-H2SO4-O2)solution at atmospheric pressure was researched.This matte was obtained from high grade Ni-Cu matte by magnetic separation,which mainly contained Ni-Cu alloy and a small quantity of sulfides.The effects of temperature,agitation speed,oxygen flow rate,particle size,acid concentration and concentration of copper ion were studied.It is found that the matte particles are leached by shrinking core mechanism and the leaching process is electrochemically controlled.In a temperature range of 30-60℃,the surface reaction is rate-limiting step,with an apparent activation energy of 41.9 kJ/mol.But at higher temperature(70-85℃),the rate process is controlled by diffusion through the product layer,with an apparent activation energy of 7.3 kJ/mol.
基金financially supported by the National Basic Research Priorities Program of China(Nos.2014CB643401 and 2013AA032003)the National Natural Science Foundation of China(No.51372019)Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes
文摘An adaptive chaotic gradient descending optimization algorithm for single objective optimization was presented. A local minimum judged by two rules was obtained by an improved mutative-step gradient descending method. A new optimal minimum was obtained to replace the local minimum by mutative-scale chaotic search algorithm whose scales are magnified gradually from a small scale in order to escape local minima. The global optimal value was attained by repeatedly iterating. At last, a BP (back-propagation) neural network model for forecasting slag output in matte converting was established. The algorithm was used to train the weights of the BP neural network model. The simulation results with a training data set of 400 samples show that the training process can be finished within 300 steps to obtain the global optimal value, and escape local minima effectively. An optimization system for operation parameters, which includes the forecasting model, is achieved, in which the output of converter increases by 6.0%, and the amount of the treated cool materials rises by 7.8% in the matte converting process.
基金Project supported by the National Natural Science Foundation of China (No. 60403044) and Microsoft Research Asia (PROJECT-2004-IMAGE-01)
文摘Environment matting and compositing is a technique to extract a foreground object, including color, opacity, reflec- tive and refractive properties, from a real-world scene, and synthesize new images by placing it into new environments. The description of the captured object is named environment matte. Recent matting and compositing techniques can produce quite realistic images for objects with complex optical properties. This paper presents an approximate method to transform the matte by simulating variation of the foreground object’s refractive index. Our algorithms can deal with achromatous-and-transparent ob- jects and the experimental results are visually acceptable. Our idea and method can be applied to produce some special video effects, which could be very useful in film making, compared with the extreme difficulty of physically changing an object’s refractive index.
基金Project(60634020) supported by the National Natural Science Foundation of ChinaProject(2002CB312200) supported by the National Basic Research and Development Program of China
文摘Due to the importance of detecting the matte grade in the copper flash smelting process, the mechanism model was established according to the multi-phase and multi-component mathematic model. Meanwhile this procedure was a complicated production process with characteristics of large time delay, nonlinearity and so on. A fuzzy neural network model was set up through a great deal of production data. Besides a novel constrained gradient descent algorithm used to update the parameters was put forward to improve the parameters learning efficiency. Ultimately the self-adaptive combination technology was adopted to paralleled integrate two models in order to obtain the prediction model of the matte grade. Industrial data validation shows that the intelligently integrated model is more precise than a single model. It can not only predict the matte grade exactly but also provide optimal control of the copper flash smelting process with potent guidance.
文摘Based on the facts that cations and anions of molten salts and binary basic oxide solid solutions do not separate from each other as well as that the electric conductivities of mattes are greater than that of salts and basic oxide solid solutions, the calculating models of mass action concentrations for binary and ternary mattes involving eutectic have been formulated. The results of calculation agree well with the values measured;this in turn shows that the calculating models can reftect the structural characteristics of the mattes concerned.
基金The National Basic Research Program (973 Plan)of China (2012CB724201)
文摘According to the chemical and phase composition of the nickel-copper-iron matte containing precious metals and the progress in enrichment of precious metals from the nickel-copper-iron matte containing precious metals at home and abroad, this paper put forward the process route of enrichment of precious metals and selectively leaching of base metals from the nickel-copper-iron matte by sulfuric acid and sodium hypochlorite. The effects of particle size, leaching temperature, leaching time, amount of sulfuric acid and sodium hypochlorite on the leaching rate of nickel, cobalt, copper and iron are mainly discussed. The results show that raw material particle size has significantly effects on the leaching rate of base metals, high leaching rate of base metals and enrichment of precious metals are obtained with the suitable particle size. Through the experiments, the reasonable experiment parameters and conditions were determined as fellows: particle size of-200 to +250 mesh, leaching temperature 95℃ , leaching time 5 h, sulfuric acid concentration 30%, adding amount of sodium hypochlorite 3 times of matte weight. Under these experiment parameters and conditions, the leaching rate of nickel, cobalt, copper and iron were 97.39%, 96.24%, 98.30% and 99.01%, respectively. The content of nickel, cobalt, copper, iron in the leaching residues was 8.15%, 0.23%, 1.40% and 0.24%, respectively. The content of Pt, Pd, Au, Ag and Rh in the leaching residues was 247 g/t, 521 g/t, 112 g/t, 494 g/t and 24 g/t, respectively. The content of Pt, Pd, Au, Ag and Rh in the leaching solution was <0.0005 g/L, 0.0023 g/L, 0.0007 g/L, <0.0005 g/L and 0.00017 g/L, respectively. This process has advantages as follows: a small investment, simple technology, high enrichment efficiency.
文摘The interfacial tension between FeO-CaO-SiO_2-MgO system slag and Cu-Fe-S system matte was determinated by the X-ray radiograph sessile drop method.The effects of FeO/SiO_2 ratio in the slag,contents of CaO,FeO,ZnO and CaF_2 in the slag on interracial tension and the relation of inter facial tension with the grade of matte and temperature have been studied.The floatation coefficient and film coefficient of slag-matte system has been calculated and the mechanism of the transition of iron and oxygen from slag to matte has also been discussed.
基金Project(50774020)supported by the National Natural Science Foundation of China
文摘A process of the selective leaching of nickel from low-sulfur Ni-Cu matte at atmospheric pressure was described.This matte was obtained from high grade Ni-Cu matte by magnetic separation,which mainly contained Ni-Cu alloy and a small quantity of sulfides.Firstly,the acid-oxygen(CuSO4-H2SO4-O2)leaching of the matte was conducted at atmospheric pressure.When the solution pH value reached 1.0-2.0,the oxygen flow was ceased.Then,the aqueous copper was rejected by cementation reaction with Ni in the alloy.The mineralogical characteristics of the matte in the process were analyzed by X-ray diffractometry,optical microscopy and scanning electron microscopy.And the effects of variations in temperature,particle size distribution,oxygen flow rate,pulp density,initial acid concentration and initial concentration of copper ion were investigated.