In recent years, relativistic matter waves have been applied to the solar system to explain some quantum gravity effects. This paper shows that the solar size and Earth’s size are the consequences of Bode’s rule in ...In recent years, relativistic matter waves have been applied to the solar system to explain some quantum gravity effects. This paper shows that the solar size and Earth’s size are the consequences of Bode’s rule in terms of the relativistic matter wave. The solar radius is determined as 7e+8 (m) with a relative error of 0.72%;the Earth’s radius is determined as 6.4328e+6 (m) with a relative error of 0.86%. The Earth’s atmospheric circulation is also investigated in terms of the relativistic matter wave, the wind fields on the Earth’s surface are calculated, and the results agree well with experimental observation. These findings indicate that the solar system is under the control of the planetary relativistic matter waves.展开更多
In this work, we show that it is possible to establish coordinate transformations between inertial reference frames in the theory of special relativity with a minimum universal speed of physical transmissions. The est...In this work, we show that it is possible to establish coordinate transformations between inertial reference frames in the theory of special relativity with a minimum universal speed of physical transmissions. The established coordinate transformations, referred to as modified Lorentz transformations because they have almost identical form to the Lorentz transformations, also comply with the requirement of invariance of the Minkowski line element. Particularly, the minimum universal speed can be associated with the phase speed of de Broglie matter wave. As application, we also discuss the possibility to formulate relativistic classical and quantum mechanics for the special relativity associated with the modified Lorentz transformations, which describes physical processes that represent an expansion or a collapsing of massive quantum particles.展开更多
It was predicted by Einstein that energy and mass can be converted between each other. But why? Energy and mass are two very different physical concepts. How can they be exchanged with each other? We think the key to ...It was predicted by Einstein that energy and mass can be converted between each other. But why? Energy and mass are two very different physical concepts. How can they be exchanged with each other? We think the key to answer this question is to recall that a particle can behave like a wave. Particle properties like energy and momentum are known to be related to their corresponding wave properties (frequency and wave vector). Mass is clearly a particle property;is it also related to a wave property? This study suggests that it is. We found that mass and energy appear to share similar physical nature in the wave perspective. Both of them are related to the curvature of bending the vacuum medium during the propagation of the excitation wave. This similarity explains why they are convertible.展开更多
The relation of matter wave, which is well-known as a hypothesis proposed by de Broglie in 1923, gave basis for establishing the quantum mechanics. After that, experimental results revealed that a micro particle has a...The relation of matter wave, which is well-known as a hypothesis proposed by de Broglie in 1923, gave basis for establishing the quantum mechanics. After that, experimental results revealed that a micro particle has a wave nature. However, the theoretical validity of the relation itself has never been revealed since his proposal. Theoretical basis that a micro particle has a wave nature has been thus disregarded in the unsolved state. The diffusion equation having been accepted as Fick’s second law was derived from the theory of Markov process in mathematics. It was then revealed that the diffusivity D depends on an angular momentum of a micro particle in a local space. The fact being unable to discriminate between micro particles in a local space resulted in having to accept the existence of minimum time t<sub>0 </sub>(>0) in the quantum mechanics. Based on t<sub>0</sub> and D obtained here, the theoretical validity of relation of matter wave was confirmed. Denying the density theorem in mathematics for time in physics indicates that the probabilistic interpretation is essentially indispensable for understanding the quantum mechanics. The logical necessity of quantum theory itself is thus understandable through introducing t<sub>0</sub> into the Newton mechanics. It is remarkable that the value of t<sub>0</sub> between 1.14×10<sup>-17</sup> s ≤ t<sub>0 </sub>≤1.76×10<sup>-14 </sup>s obtained here is extremely larger than that of the well-known Planck time t<sub>p</sub>=5.396×10<sup>-44 </sup>s.展开更多
We show that Wu-Yang theory of fully quantized four-wave mixing can be generalized to the six-wave mixing and derive the analytical solution of the coupled equations describing the quantum dynamics of six-wave mixing.
The dynamics of the weak non//near matter sofitary waves in a spin-1 condensates with harmonic external potential are investigated analytically by a perturbation method. It is shown that, in the small amplitude limit,...The dynamics of the weak non//near matter sofitary waves in a spin-1 condensates with harmonic external potential are investigated analytically by a perturbation method. It is shown that, in the small amplitude limit, the dynamics of the solitary waves are governed by a variable-coetficient Korteweg-de Vries (KdV) equation. The reduction to the (KdV) equation may be useful to understand the dynamics of nonlinear matter waves in spinor BECs. The analytical expressions for the evolution of soliton show that the small-amplitude vector solitons of the mixed types perform harmonic oscillations in the presence of the trap. Furthermore, the emitted radiation profiles and the soliton oscillation frequency are also obtained.展开更多
A new approach of the matter waves concept initiated by Louis de Broglie leads to a new model – the vacuum matter waves. By using the physics of time dilation, one can calculate a gravitational cutoff frequency, with...A new approach of the matter waves concept initiated by Louis de Broglie leads to a new model – the vacuum matter waves. By using the physics of time dilation, one can calculate a gravitational cutoff frequency, with respect to the spectrum of vacuum fluctuations, which is the upper bound of the frequency range of this new model. We described the properties of these new waves and outlined the connection between them and the dimensions at Planck length level. The calculation of velocity in circular orbits by using this new concept complies with the well-known equation. One of its consequences is that the structure of the physical vacuum is modified on the radial direction with the gravity source, but not modified on its tangential direction. This study places the space-time structure from sub-quantum level into a new light and makes the connection between this level and that of the planetary systems.展开更多
This paper proposes a scheme of axial triple-well optical dipole trap by employing a simple optical system composed of a circular cosine grating and a lens. Three optical wells separated averagely by -37 μm were crea...This paper proposes a scheme of axial triple-well optical dipole trap by employing a simple optical system composed of a circular cosine grating and a lens. Three optical wells separated averagely by -37 μm were created when illuminating by a YAG laser with power 1 mW. These wells with average trapping depth -0.5 μK and volume -74 μm^3 are suitable to trap and manipulate an atomic Bose-Einstein condensation (BEC). Due to a controllable grating implemented by a spatial light modulator, an evolution between a triple-well trap and a single-well one is achievable by adjusting the height of potential barrier between adjacent wells. Based on this novel triple-well potentials, the loading and splitting of BEC, as well as the interference between three freely expanding BECs, are also numerically stimulated within the framework of mean-field treatment. By fitting three cosine functions with three Gaussian envelopes to interference fringe, the information of relative phases among three condensates is extracted.展开更多
An extended variation approach to describing the dynamic evolution of self-attractive Bose-Einstein condensates is developed. We consider bright matter-wave solitons in the presence of a parabolic magnetic potential a...An extended variation approach to describing the dynamic evolution of self-attractive Bose-Einstein condensates is developed. We consider bright matter-wave solitons in the presence of a parabolic magnetic potential and a timespace periodic optical lattice. The dynamics of condensates is shown to be well approximated by four coupled nonlinear differential equations. A noteworthy feature is that the extended variation approach gives a critical strength ratio to support multiple stable lattice sites for the condensate. We further examine the existence of the solitons and their stabilities at the multiple stable lattice sites. In this case, the analytical predictions of Bose-Einstein condensates variational dynamics are found to be in good agreement with numerical simulations. We then find a stable region for successful manipulating matter-wave solitons without collapse, which are dragged from an initial stationary to a prescribed position by a moving periodic optical lattice.展开更多
We investigate the oscillation periods of bright soliton pair or vector bright soliton pair in harmonic potentials. We demonstrate that periods of low-speed solitons are greatly affected by the position shift during t...We investigate the oscillation periods of bright soliton pair or vector bright soliton pair in harmonic potentials. We demonstrate that periods of low-speed solitons are greatly affected by the position shift during their collisions. The modified oscillation periods are described by defining a characterized speed, with the aid of asymptotic analysis on related exact analytic soliton solutions in integrable cases. The oscillation period can be used to distinguish the inter-and intra-species interactions between solitons. However, a bright soliton cannot oscillate in a harmonic trap, when it is coupled with a dark soliton(without any trapping potentials). Interestingly, it can oscillate in an anti-harmonic potential, and the oscillation behavior is explained by a quasi-particle theory. The modified period of two dark-bright solitons can be also described well by the characterized speed. These results address well the effects of position shift during soliton collision, which provides an important supplement for previous studies without considering phase shift effects.展开更多
Two reviews of papers are considered. The first paper for a galaxy model uses matter consisting of neutrinos, bosons and other similar particles. It is shown that these particles were introduced as a result of an inco...Two reviews of papers are considered. The first paper for a galaxy model uses matter consisting of neutrinos, bosons and other similar particles. It is shown that these particles were introduced as a result of an incorrect description of interactions in the Theory of Relativity. In reality, with the relative motion of interacting particles, their interactions force changes, and not their mass. It is shown that models of such stellar associations as globular clusters and galaxies should be created on the basis of the substance that exists on Earth. The second peer-reviewed paper proposes to create LIGO on the Moon. It is shown that gravitational waves do not exist. They were introduced to explain the excessive rotation of the Mercury’s perihelion. However, the excessive rotation of the Mercury’s perihelion is due to the Sun oblateness. The paper shows that gravitational waves, the Big Bang, the expanding Universe, dark matter, dark energy, etc. appeared on the basis of unfounded hypotheses. The urgent task is to eliminate them from science.展开更多
The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force mu...The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force must be something, for consistencies sake it had to be tested. This paper was written in order to confirm the results that were received in the experiments that took place that led to the paper “Magnetism: Insights from the Thomas Young Experiment” where it was concluded the magnetic phenomenon is both a particle and a wave. Will different interference patterns confirm a khumalon and wave like behaviour? The khumalon is the name of the particle associated with magnetic phenomenon. This paper concludes by confirming what was discovered in mentioned paper. Magnetism organizes into a wave no matter the interference. Understanding this reality, it allows us to understand what is happening with simple magnetic interactions. When like poles meet because they can not occupy the same space they push each other. Opposite poles are antiparticles to each other and annihilate each other. South pole scientifically speaking is not attracted to the north pole, the reason why the magnets slam each other is because they are closing a magnetic vacuum caused by the particles annihilating each other. We can now start theorizing on why a lodestone attracts iron because we now know we are dealing with a particle.展开更多
The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force mu...The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force must be something, for consistencies sake it had to be tested. This paper was written in order to confirm the results that were received in the experiments that took place that led to the paper “Magnetism: Insights from the Thomas Young Experiment” where it was concluded the magnetic phenomenon is both a particle and a wave. Will different interference patterns confirm a khumalon and wave like behaviour? The khumalon is the name of the particle associated with magnetic phenomenon. This paper concludes by confirming what was discovered in mentioned paper. Magnetism organizes into a wave no matter the interference. Understanding this reality, it allows us to understand what is happening with simple magnetic interactions. When like poles meet because they can not occupy the same space they push each other. Opposite poles are antiparticles to each other and annihilate each other. South pole scientifically speaking is not attracted to the north pole, the reason why the magnets slam each other is because they are closing a magnetic vacuum caused by the particles annihilating each other. We can now start theorizing on why a lodestone attracts iron because we now know we are dealing with a particle.展开更多
In this paper we develop and study, as the second part of one more general development, the energy transmutation equation for the material singularity, previously obtained through the symmetrisation of a wave packet, ...In this paper we develop and study, as the second part of one more general development, the energy transmutation equation for the material singularity, previously obtained through the symmetrisation of a wave packet, that is, we develop the correlation between the terms of this equation, which accounts for the formation of matter from a previous vibrational state, and the different possible energy species. These energetic species are ascribed, in a simplified form, to the equation E¯ω=E¯k+E¯f, which allows us, through its associated phase factor, to gain an insight into the wave character of the kinetic energy and thus to attain the basis of the matter-wave, and all sorts of related phenomenologies, including that concerning quantum entanglement. The formation of the matter was previously identified as an energetic process, analogous to the kinetic one, in which finally the inertial mass is consolidated as a mass in a different phase, now, in addition, the mass of the material singularity is identified as a volumetric density of waves of toroidal geometry created in the process of singularisation or energy transfer between species, which makes it possible to establish the real relation or correspondence between the corpuscular and photonic energy equation (E=mc2=hν), i.e. to explain through m the intimate sense of the first equivalence, which explains what νis in the second one.展开更多
Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency t...Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency transfer,measurement of fundamental physical constants,and high-precision ranging,achieving a series of milestone results in ground-based environments.With the continuous maturation and evolution of femtosecond lasers and related technologies,optical frequency combs are moving from ground-based applications to astronomical and space-based applications,playing an increasingly important role in atomic clocks,exoplanet observations,gravitational wave measurements,and other areas.This paper,focusing on astronomical and space-based applications,reviews research progress on astronomical frequency combs,optical clock time-frequency networks,gravitational waves,dark matter measurement,dual-comb large-scale absolute ranging,and high-resolution atmospheric spectroscopy.With enhanced performance and their gradual application in the field of space-based research,optical frequency combs will undoubtedly provide more powerful support for astronomical science and cosmic exploration in the future.展开更多
In an article written by Louis de Broglie in 1959 (30 years after the Nobel prize rewarding his foundation of Wave Mechanics), the most challenging problem raised by the Bohr, Heisenberg and Born Standard Quantum Mech...In an article written by Louis de Broglie in 1959 (30 years after the Nobel prize rewarding his foundation of Wave Mechanics), the most challenging problem raised by the Bohr, Heisenberg and Born Standard Quantum Mechanics (SQM) was pointed out in the renunciation to describe “a permanent localization in space, and therefore a well-defined trajectory” for any moving particle. This challenge is taken up in the present paper, showing that de Broglie’s Primary Assumption p=hk, predicting the wave-particle duality, does also allow to obtain from the energy-dependent form of the Schrödinger and/or Klein-Gordon equations the Guidance Laws piloting particles along well-defined trajectories. The energy-independent equations, on the other hand, may only give rise—both in SQM and in the Bohmian approach—to probabilistic descriptions, overshadowing the role of de Broglie’s matter waves in physical space.展开更多
Both classical and wave-mechanical monochromatic waves may be treated in terms of exact ray-trajectories (encoded in the structure itself of Helmholtz-like equations) whose mutual coupling is the one and only cause of...Both classical and wave-mechanical monochromatic waves may be treated in terms of exact ray-trajectories (encoded in the structure itself of Helmholtz-like equations) whose mutual coupling is the one and only cause of any diffraction and interference process. In the case of Wave Mechanics, de Broglie’s merging of Maupertuis’s and Fermat’s principles (see Section 3) provides, without resorting to the probability-based guidance-laws and flow-lines of the Bohmian theory, the simple law addressing particles along the Helmholtz rays of the relevant matter waves. The purpose of the present research was to derive the exact Hamiltonian ray-trajectory systems concerning, respectively, classical electromagnetic waves, non-relativistic matter waves and relativistic matter waves. We faced then, as a typical example, the numerical solution of non-relativistic wave-mechanical equation systems in a number of numerical applications, showing that each particle turns out to “dances a wave-mechanical dance” around its classical trajectory, to which it reduces when the ray-coupling is neglected. Our approach reaches the double goal of a clear insight into the mechanism of wave-particle duality and of a reasonably simple computability. We finally compared our exact dynamical approach, running as close as possible to Classical Mechanics, with the hydrodynamic Bohmian theory, based on fluid-like “guidance laws”.展开更多
文摘In recent years, relativistic matter waves have been applied to the solar system to explain some quantum gravity effects. This paper shows that the solar size and Earth’s size are the consequences of Bode’s rule in terms of the relativistic matter wave. The solar radius is determined as 7e+8 (m) with a relative error of 0.72%;the Earth’s radius is determined as 6.4328e+6 (m) with a relative error of 0.86%. The Earth’s atmospheric circulation is also investigated in terms of the relativistic matter wave, the wind fields on the Earth’s surface are calculated, and the results agree well with experimental observation. These findings indicate that the solar system is under the control of the planetary relativistic matter waves.
文摘In this work, we show that it is possible to establish coordinate transformations between inertial reference frames in the theory of special relativity with a minimum universal speed of physical transmissions. The established coordinate transformations, referred to as modified Lorentz transformations because they have almost identical form to the Lorentz transformations, also comply with the requirement of invariance of the Minkowski line element. Particularly, the minimum universal speed can be associated with the phase speed of de Broglie matter wave. As application, we also discuss the possibility to formulate relativistic classical and quantum mechanics for the special relativity associated with the modified Lorentz transformations, which describes physical processes that represent an expansion or a collapsing of massive quantum particles.
文摘It was predicted by Einstein that energy and mass can be converted between each other. But why? Energy and mass are two very different physical concepts. How can they be exchanged with each other? We think the key to answer this question is to recall that a particle can behave like a wave. Particle properties like energy and momentum are known to be related to their corresponding wave properties (frequency and wave vector). Mass is clearly a particle property;is it also related to a wave property? This study suggests that it is. We found that mass and energy appear to share similar physical nature in the wave perspective. Both of them are related to the curvature of bending the vacuum medium during the propagation of the excitation wave. This similarity explains why they are convertible.
文摘The relation of matter wave, which is well-known as a hypothesis proposed by de Broglie in 1923, gave basis for establishing the quantum mechanics. After that, experimental results revealed that a micro particle has a wave nature. However, the theoretical validity of the relation itself has never been revealed since his proposal. Theoretical basis that a micro particle has a wave nature has been thus disregarded in the unsolved state. The diffusion equation having been accepted as Fick’s second law was derived from the theory of Markov process in mathematics. It was then revealed that the diffusivity D depends on an angular momentum of a micro particle in a local space. The fact being unable to discriminate between micro particles in a local space resulted in having to accept the existence of minimum time t<sub>0 </sub>(>0) in the quantum mechanics. Based on t<sub>0</sub> and D obtained here, the theoretical validity of relation of matter wave was confirmed. Denying the density theorem in mathematics for time in physics indicates that the probabilistic interpretation is essentially indispensable for understanding the quantum mechanics. The logical necessity of quantum theory itself is thus understandable through introducing t<sub>0</sub> into the Newton mechanics. It is remarkable that the value of t<sub>0</sub> between 1.14×10<sup>-17</sup> s ≤ t<sub>0 </sub>≤1.76×10<sup>-14 </sup>s obtained here is extremely larger than that of the well-known Planck time t<sub>p</sub>=5.396×10<sup>-44 </sup>s.
基金China Postdoctoral Science Foundation under Grant No.20060400878Natural Science Foundation of Hunan Province under Grant No.05JJ40007+1 种基金Postdoctoral Science Foundation of Hunan Province under Grant No.2007RS4015Key Science Research Foundation of Education Department of Hunan Province under Grant No.07A057
文摘We show that Wu-Yang theory of fully quantized four-wave mixing can be generalized to the six-wave mixing and derive the analytical solution of the coupled equations describing the quantum dynamics of six-wave mixing.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10774120 and 10975114the Natural Science Foundation of Gansu Province under Grant No.1010RJZA012Natural Science Foundation of Northwest Normal University under Grant No.NWNU-KJCXGC-03-48
文摘The dynamics of the weak non//near matter sofitary waves in a spin-1 condensates with harmonic external potential are investigated analytically by a perturbation method. It is shown that, in the small amplitude limit, the dynamics of the solitary waves are governed by a variable-coetficient Korteweg-de Vries (KdV) equation. The reduction to the (KdV) equation may be useful to understand the dynamics of nonlinear matter waves in spinor BECs. The analytical expressions for the evolution of soliton show that the small-amplitude vector solitons of the mixed types perform harmonic oscillations in the presence of the trap. Furthermore, the emitted radiation profiles and the soliton oscillation frequency are also obtained.
文摘A new approach of the matter waves concept initiated by Louis de Broglie leads to a new model – the vacuum matter waves. By using the physics of time dilation, one can calculate a gravitational cutoff frequency, with respect to the spectrum of vacuum fluctuations, which is the upper bound of the frequency range of this new model. We described the properties of these new waves and outlined the connection between them and the dimensions at Planck length level. The calculation of velocity in circular orbits by using this new concept complies with the well-known equation. One of its consequences is that the structure of the physical vacuum is modified on the radial direction with the gravity source, but not modified on its tangential direction. This study places the space-time structure from sub-quantum level into a new light and makes the connection between this level and that of the planetary systems.
基金supported by the National Natural Science Foundation of China (Grant Nos.10434060,10674047 and 10804031)the National Key Basic Research and Development Program of China (Grant No.2006CB921604)+2 种基金the Program for Changjiang Scholarand Innovative Research Team and Shanghai Leading Academic Discipline Project (Grant No.B408)the Youth Foundation of Jiangxi Educational Committee (Grant No.GJJ09530)the Scientific Research Foundation of ECIT (Grant No.DSH0417)
文摘This paper proposes a scheme of axial triple-well optical dipole trap by employing a simple optical system composed of a circular cosine grating and a lens. Three optical wells separated averagely by -37 μm were created when illuminating by a YAG laser with power 1 mW. These wells with average trapping depth -0.5 μK and volume -74 μm^3 are suitable to trap and manipulate an atomic Bose-Einstein condensation (BEC). Due to a controllable grating implemented by a spatial light modulator, an evolution between a triple-well trap and a single-well one is achievable by adjusting the height of potential barrier between adjacent wells. Based on this novel triple-well potentials, the loading and splitting of BEC, as well as the interference between three freely expanding BECs, are also numerically stimulated within the framework of mean-field treatment. By fitting three cosine functions with three Gaussian envelopes to interference fringe, the information of relative phases among three condensates is extracted.
基金supported by the National Natural Science Foundation of China (Grant Nos.10672147 and 11072219)the Natural Science Foundation of Zhejiang Province,China (Grant Nos.Y605312 and Y1080959)the Foundation of Department of Education of Zhejiang Province,China (Grant No.20030704)
文摘An extended variation approach to describing the dynamic evolution of self-attractive Bose-Einstein condensates is developed. We consider bright matter-wave solitons in the presence of a parabolic magnetic potential and a timespace periodic optical lattice. The dynamics of condensates is shown to be well approximated by four coupled nonlinear differential equations. A noteworthy feature is that the extended variation approach gives a critical strength ratio to support multiple stable lattice sites for the condensate. We further examine the existence of the solitons and their stabilities at the multiple stable lattice sites. In this case, the analytical predictions of Bose-Einstein condensates variational dynamics are found to be in good agreement with numerical simulations. We then find a stable region for successful manipulating matter-wave solitons without collapse, which are dragged from an initial stationary to a prescribed position by a moving periodic optical lattice.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12022513, 11775176, 11947301, and 12047502)the Major Basic Research Program of the Natural Science of Foundation of Shaanxi Province, China (Grant Nos. 2018KJXX-094 and 2017KCT-12)。
文摘We investigate the oscillation periods of bright soliton pair or vector bright soliton pair in harmonic potentials. We demonstrate that periods of low-speed solitons are greatly affected by the position shift during their collisions. The modified oscillation periods are described by defining a characterized speed, with the aid of asymptotic analysis on related exact analytic soliton solutions in integrable cases. The oscillation period can be used to distinguish the inter-and intra-species interactions between solitons. However, a bright soliton cannot oscillate in a harmonic trap, when it is coupled with a dark soliton(without any trapping potentials). Interestingly, it can oscillate in an anti-harmonic potential, and the oscillation behavior is explained by a quasi-particle theory. The modified period of two dark-bright solitons can be also described well by the characterized speed. These results address well the effects of position shift during soliton collision, which provides an important supplement for previous studies without considering phase shift effects.
文摘Two reviews of papers are considered. The first paper for a galaxy model uses matter consisting of neutrinos, bosons and other similar particles. It is shown that these particles were introduced as a result of an incorrect description of interactions in the Theory of Relativity. In reality, with the relative motion of interacting particles, their interactions force changes, and not their mass. It is shown that models of such stellar associations as globular clusters and galaxies should be created on the basis of the substance that exists on Earth. The second peer-reviewed paper proposes to create LIGO on the Moon. It is shown that gravitational waves do not exist. They were introduced to explain the excessive rotation of the Mercury’s perihelion. However, the excessive rotation of the Mercury’s perihelion is due to the Sun oblateness. The paper shows that gravitational waves, the Big Bang, the expanding Universe, dark matter, dark energy, etc. appeared on the basis of unfounded hypotheses. The urgent task is to eliminate them from science.
文摘The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force must be something, for consistencies sake it had to be tested. This paper was written in order to confirm the results that were received in the experiments that took place that led to the paper “Magnetism: Insights from the Thomas Young Experiment” where it was concluded the magnetic phenomenon is both a particle and a wave. Will different interference patterns confirm a khumalon and wave like behaviour? The khumalon is the name of the particle associated with magnetic phenomenon. This paper concludes by confirming what was discovered in mentioned paper. Magnetism organizes into a wave no matter the interference. Understanding this reality, it allows us to understand what is happening with simple magnetic interactions. When like poles meet because they can not occupy the same space they push each other. Opposite poles are antiparticles to each other and annihilate each other. South pole scientifically speaking is not attracted to the north pole, the reason why the magnets slam each other is because they are closing a magnetic vacuum caused by the particles annihilating each other. We can now start theorizing on why a lodestone attracts iron because we now know we are dealing with a particle.
文摘The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force must be something, for consistencies sake it had to be tested. This paper was written in order to confirm the results that were received in the experiments that took place that led to the paper “Magnetism: Insights from the Thomas Young Experiment” where it was concluded the magnetic phenomenon is both a particle and a wave. Will different interference patterns confirm a khumalon and wave like behaviour? The khumalon is the name of the particle associated with magnetic phenomenon. This paper concludes by confirming what was discovered in mentioned paper. Magnetism organizes into a wave no matter the interference. Understanding this reality, it allows us to understand what is happening with simple magnetic interactions. When like poles meet because they can not occupy the same space they push each other. Opposite poles are antiparticles to each other and annihilate each other. South pole scientifically speaking is not attracted to the north pole, the reason why the magnets slam each other is because they are closing a magnetic vacuum caused by the particles annihilating each other. We can now start theorizing on why a lodestone attracts iron because we now know we are dealing with a particle.
文摘In this paper we develop and study, as the second part of one more general development, the energy transmutation equation for the material singularity, previously obtained through the symmetrisation of a wave packet, that is, we develop the correlation between the terms of this equation, which accounts for the formation of matter from a previous vibrational state, and the different possible energy species. These energetic species are ascribed, in a simplified form, to the equation E¯ω=E¯k+E¯f, which allows us, through its associated phase factor, to gain an insight into the wave character of the kinetic energy and thus to attain the basis of the matter-wave, and all sorts of related phenomenologies, including that concerning quantum entanglement. The formation of the matter was previously identified as an energetic process, analogous to the kinetic one, in which finally the inertial mass is consolidated as a mass in a different phase, now, in addition, the mass of the material singularity is identified as a volumetric density of waves of toroidal geometry created in the process of singularisation or energy transfer between species, which makes it possible to establish the real relation or correspondence between the corpuscular and photonic energy equation (E=mc2=hν), i.e. to explain through m the intimate sense of the first equivalence, which explains what νis in the second one.
基金support of the National Natural Sci-ence Foundation of China(NSFC)(62305373)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA1502040404,XDB2101040004).
文摘Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency transfer,measurement of fundamental physical constants,and high-precision ranging,achieving a series of milestone results in ground-based environments.With the continuous maturation and evolution of femtosecond lasers and related technologies,optical frequency combs are moving from ground-based applications to astronomical and space-based applications,playing an increasingly important role in atomic clocks,exoplanet observations,gravitational wave measurements,and other areas.This paper,focusing on astronomical and space-based applications,reviews research progress on astronomical frequency combs,optical clock time-frequency networks,gravitational waves,dark matter measurement,dual-comb large-scale absolute ranging,and high-resolution atmospheric spectroscopy.With enhanced performance and their gradual application in the field of space-based research,optical frequency combs will undoubtedly provide more powerful support for astronomical science and cosmic exploration in the future.
文摘In an article written by Louis de Broglie in 1959 (30 years after the Nobel prize rewarding his foundation of Wave Mechanics), the most challenging problem raised by the Bohr, Heisenberg and Born Standard Quantum Mechanics (SQM) was pointed out in the renunciation to describe “a permanent localization in space, and therefore a well-defined trajectory” for any moving particle. This challenge is taken up in the present paper, showing that de Broglie’s Primary Assumption p=hk, predicting the wave-particle duality, does also allow to obtain from the energy-dependent form of the Schrödinger and/or Klein-Gordon equations the Guidance Laws piloting particles along well-defined trajectories. The energy-independent equations, on the other hand, may only give rise—both in SQM and in the Bohmian approach—to probabilistic descriptions, overshadowing the role of de Broglie’s matter waves in physical space.
文摘Both classical and wave-mechanical monochromatic waves may be treated in terms of exact ray-trajectories (encoded in the structure itself of Helmholtz-like equations) whose mutual coupling is the one and only cause of any diffraction and interference process. In the case of Wave Mechanics, de Broglie’s merging of Maupertuis’s and Fermat’s principles (see Section 3) provides, without resorting to the probability-based guidance-laws and flow-lines of the Bohmian theory, the simple law addressing particles along the Helmholtz rays of the relevant matter waves. The purpose of the present research was to derive the exact Hamiltonian ray-trajectory systems concerning, respectively, classical electromagnetic waves, non-relativistic matter waves and relativistic matter waves. We faced then, as a typical example, the numerical solution of non-relativistic wave-mechanical equation systems in a number of numerical applications, showing that each particle turns out to “dances a wave-mechanical dance” around its classical trajectory, to which it reduces when the ray-coupling is neglected. Our approach reaches the double goal of a clear insight into the mechanism of wave-particle duality and of a reasonably simple computability. We finally compared our exact dynamical approach, running as close as possible to Classical Mechanics, with the hydrodynamic Bohmian theory, based on fluid-like “guidance laws”.