期刊文献+
共找到63,728篇文章
< 1 2 250 >
每页显示 20 50 100
Generalized nth-Order Perturbation Method Based on Loop Subdivision Surface Boundary Element Method for Three-Dimensional Broadband Structural Acoustic Uncertainty Analysis
1
作者 Ruijin Huo Qingxiang Pei +1 位作者 Xiaohui Yuan Yanming Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期2053-2077,共25页
In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Mill... In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples. 展开更多
关键词 Perturbation method loop subdivision surface isogeometric boundary element method uncertainty analysis
下载PDF
Multi-Elemental Analysis and 2D Image Mapping within Roots, Leaves and Seeds from O. glaberrima Rice Plants Using Micro-PIXE Technique
2
作者 Alassane Traore Anna Ndiaye +6 位作者 Christopher Bongani Mtshali Manneh Baboucarr Jean Paul Latyr Faye Daouda Mbodj Kandiaba Traore Tapha Gueye Ababacar Sadikhe Ndao 《World Journal of Nuclear Science and Technology》 CAS 2024年第2期97-106,共10页
Understanding metal accumulation at organ level in roots, leaves and seeds in O. glaberrima (OG) is crucial for improving physiological and metabolic aspects in growing Asian and African rice in salted areas. The micr... Understanding metal accumulation at organ level in roots, leaves and seeds in O. glaberrima (OG) is crucial for improving physiological and metabolic aspects in growing Asian and African rice in salted areas. The micro-analytical imaging techniques are required to reveal its accumulation and distribution within plant tissues. PIXE studies have been performed to determine different elements in rice plants. The existing microbeam analytical technique at the iThemba LABS will be applied for the 2D image mapping of fresh rice tissues to perform a concentration of low atomic mass elements (such as Al, Si, P, S, Cl, Ca, Ti, Mn, Fe, Cu, Br, Zn and K) with detection limits of typically 1-10 μg/g. Comparison of the distribution of the elements between leaves, root and seed samples using uptake and distribution of elements in particular environmental conditions with potential amount of salt in water have been performed. We are also expecting to indicate metal exclusion as salt tolerance strategies from leaves, root, and seed compartments using matrix correlation between samples and between elements on rice species. 展开更多
关键词 PIXE 2D Mapping Rice Concentration elemental analysis
下载PDF
Collapse Behavior of Pipe-Framed Greenhouses with and without Reinforcement under Snow Loading:A 3-D Finite Element Analysis
3
作者 Yasushi Uematsu Kazuya Takahashi 《Journal of Civil Engineering and Architecture》 2024年第2期51-59,共9页
The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are ... The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are considered.Three snow load distribution patterns related to the wind-driven snow particle movement are used in the analysis.It is found that snow load distribution affects the deformation and collapse behavior of the pipe-framed greenhouse significantly.The results obtained in this study are consistent with the actual damage observed.Next,discussion is made of the effects of reinforcements by adding members to the basic frame on the strength of the whole structure,in which seven kinds of reinforcement methods are examined.A buckling analysis is also carried out.The results indicate that the most effective reinforcement method depends on the snow load distribution pattern. 展开更多
关键词 Pipe-framed greenhouse snow loading COLLAPSE BUCKLING finite element analysis
下载PDF
Finite Element Analysis of Coronal Shear Fractures of the Femoral Neck: Displacement of the Femoral Head and Effect of Osteosynthetic Implants
4
作者 Yukino Mori Hiroaki Kijima +2 位作者 Mei Terashi Takehiro Iwami Naohisa Miyakoshi 《World Journal of Engineering and Technology》 2024年第3期651-664,共14页
Coronal shear fractures of the femoral neck (CSFF) are the most challenging to treat among proximal femur fractures, directly affecting the life expectancy of patients with osteoporosis. However, an adequate osteosynt... Coronal shear fractures of the femoral neck (CSFF) are the most challenging to treat among proximal femur fractures, directly affecting the life expectancy of patients with osteoporosis. However, an adequate osteosynthesis method has not been elucidated yet. This study investigated the displacement direction of the femoral head fragment and its effect on the bone using finite element method. A finite element model for CSFF was developed from CT image data of a patient with osteoporosis using Mechanical Finder (ver. 11). Subsequently, finite element analyses were performed on six osteosynthesis models under maximum load applied during walking. The compressive stresses, tensile stresses, and compressive strains of each model were examined. The results suggested that the compressive and tensile stress distributions were concentrated on the anterior side of the femoral neck. Compressive strain distribution in the femoral head and neck was concentrated in four areas: at the tip of the blade or lag screw, the anteroinferior side of the blade or lag screw near the fracture site, and the upper right and lower left near the junction of the blade or lag screw and nail. Thus, the distribution of both these stresses revealed that the femoral head fragment was prone to anterior and inferior displacement. Distribution of compressive strains revealed the direction of the stress exerted by the osteosynthetic implant on the bone. The same results were observed in all osteosynthetic implants;thus, the findings could lay the foundation for developing methods for placing osteosynthetic implants less prone to displacement and the osteosynthetic implants themselves. In particular, the study provides insight into the optimal treatment of CSFF. 展开更多
关键词 Finite element analysis Proximal Femur Fractures Intramedullary Fixation Coronal Shear Fractures Femoral Neck
下载PDF
Predicting the alloying element yield in a ladle furnace using principal component analysis and deep neural network 被引量:7
5
作者 Zicheng Xin Jiangshan Zhang +2 位作者 Yu Jin Jin Zheng Qing Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期335-344,共10页
The composition control of molten steel is one of the main functions in the ladle furnace(LF)refining process.In this study,a feasible model was established to predict the alloying element yield using principal compon... The composition control of molten steel is one of the main functions in the ladle furnace(LF)refining process.In this study,a feasible model was established to predict the alloying element yield using principal component analysis(PCA)and deep neural network(DNN).The PCA was used to eliminate collinearity and reduce the dimension of the input variables,and then the data processed by PCA were used to establish the DNN model.The prediction hit ratios for the Si element yield in the error ranges of±1%,±3%,and±5%are 54.0%,93.8%,and98.8%,respectively,whereas those of the Mn element yield in the error ranges of±1%,±2%,and±3%are 77.0%,96.3%,and 99.5%,respectively,in the PCA-DNN model.The results demonstrate that the PCA-DNN model performs better than the known models,such as the reference heat method,multiple linear regression,modified backpropagation,and DNN model.Meanwhile,the accurate prediction of the alloying element yield can greatly contribute to realizing a“narrow window”control of composition in molten steel.The construction of the prediction model for the element yield can also provide a reference for the development of an alloying control model in LF intelligent refining in the modern iron and steel industry. 展开更多
关键词 ladle furnace element yield principal component analysis deep neural network statistical evaluation
下载PDF
Application of Isogeometric Analysis Method in Three-Dimensional Gear Contact Analysis
6
作者 Long Chen Yan Yu +2 位作者 Yanpeng Shang Zhonghou Wang Jing Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期817-846,共30页
Gears are pivotal in mechanical drives,and gear contact analysis is a typically difficult problem to solve.Emerging isogeometric analysis(IGA)methods have developed new ideas to solve this problem.In this paper,a thre... Gears are pivotal in mechanical drives,and gear contact analysis is a typically difficult problem to solve.Emerging isogeometric analysis(IGA)methods have developed new ideas to solve this problem.In this paper,a threedimensional body parametric gear model of IGA is established,and a theoretical formula is derived to realize single-tooth contact analysis.Results were benchmarked against those obtained from commercial software utilizing the finite element analysis(FEA)method to validate the accuracy of our approach.Our findings indicate that the IGA-based contact algorithmsuccessfullymet theHertz contact test.When juxtaposed with the FEA approach,the IGAmethod demonstrated fewer node degrees of freedomand reduced computational units,all whilemaintaining comparable accuracy.Notably,the IGA method appeared to exhibit consistency in analysis accuracy irrespective of computational unit density,and also significantlymitigated non-physical oscillations in contact stress across the tooth width.This underscores the prowess of IGA in contact analysis.In conclusion,IGA emerges as a potent tool for addressing contact analysis challenges and holds significant promise for 3D gear modeling,simulation,and optimization of various mechanical components. 展开更多
关键词 Contact analysis involute gear isogeometric analysis finite element analysis
下载PDF
Preliminary electromagnetic analysis of the COOL blanket for CFETR
7
作者 鲁帅领 马学斌 刘松林 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期101-108,共8页
The supercritical CO_(2)cOoled Lithium-Lead(COOL)blanket has been designed as one advanced blanket candidate for the Chinese Fusion Engineering Test Reactor(CFETR).This work focuses on the electromagnetic(EM)loads(Max... The supercritical CO_(2)cOoled Lithium-Lead(COOL)blanket has been designed as one advanced blanket candidate for the Chinese Fusion Engineering Test Reactor(CFETR).This work focuses on the electromagnetic(EM)loads(Maxwell force and Lorentz force)acting on the COOL blanket,which are important mechanical loads in further structural analysis of the COOL blanket.A 3D electromagnetic analysis is performed using the ANSYS finite element method to obtain EM loads on the COOL blanket in this study.At first,the magnetic scalar potential(MSP)method is used to obtain the magnetic field and the Maxwell force on the COOL blanket.Then,the magnetic vector potential(MVP)method is performed during a plasma disruption event to get the eddy current distribution.At last,a multi-step method is adopted for the calculation of the Lorentz force and the torque.The maximum Lorentz forces of inboard and outboard blanket structural components are 5624 kN and 2360 kN respectively. 展开更多
关键词 CFETR COOL blanket finite element analysis electromagnetic analysis
下载PDF
Failure analysis of 3D woven composites under tension based on realistic model
8
作者 Binbin ZHANG Guangchang CHEN +4 位作者 Bing WANG Jingran GE Mengran LI Zengfei LIU Jun LIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第11期242-253,共12页
The failure behavior of the three-dimensional(3D)woven composites under tension are evaluated via experimentation and simulation.To accurately depict the intricate geometry of the woven composites,including the fluctu... The failure behavior of the three-dimensional(3D)woven composites under tension are evaluated via experimentation and simulation.To accurately depict the intricate geometry of the woven composites,including the fluctuation of yarn paths,variations in cross-section,and resin distribution,the image-aided digital elements modeling approach is employed.Subsequently,to further assess both the tensile performance and damage response,a realistic voxel model is established with the integration of a well-suited progressive damage model.The obtained stress-strain curves align with the experimental results,and damage progression and underlying mechanisms involved are clearly revealed.Specifically,when subjected to warp tension,severe transverse damage and fiber bundle pull-out towards the warp yarns are observed within the curved section.Similarly,under weft loading,longitudinal damage is found to occur in the weft yarns,while the warp yarns suffer from transverse damage,leading to the formation of a smooth and brittle crack.Ultimately,the findings of this study hold potential to advance the engineering applications of the3D woven composites. 展开更多
关键词 Mechanical properties Failure analysis Woven composites Realistic model Digital element methodology
原文传递
Analysis of mechanical strengths of extreme line casing joint considering geometric, material, and contact nonlinearities
9
作者 Ji-Yun Zhang Chi Peng +4 位作者 Jian-Hong Fu Quan Cao Yu Su Jian-Yun Pang Zi-Qiang Yu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1992-2004,共13页
To address the challenges associated with difficult casing running,limited annular space,and poor cementing quality in the completion of ultra-deep wells,the extreme line casing offers an effective solution over conve... To address the challenges associated with difficult casing running,limited annular space,and poor cementing quality in the completion of ultra-deep wells,the extreme line casing offers an effective solution over conventional casings.However,due to its smaller size,the joint strength of extreme line casing is reduced,which may cause failure when running in the hole.To address this issue,this study focuses on the CST-ZTΦ139.7 mm×7.72 mm extreme line casing and employs the elastic-plastic mechanics to establish a comprehensive analysis of the casing joint,taking into account the influence of geometric and material nonlinearities.A finite element model is developed to analyze the forces and deformations of the extreme line casing joint under axial tension and external collapse load.The model investigates the stress distribution of each thread tooth subjected to various tensile forces and external pressures.Additionally,the tensile strength and crushing strength of the extreme line casing joint are determined through both analytical and experimental approaches.The findings reveal that,under axial tensile load,the bearing surface of each thread tooth experiences uneven stress,with relatively high equivalent stress at the root of each thread tooth.The end thread teeth are valuable spots for failure.It is observed that the critical fracture axial load of thread decreases linearly with the increase of thread tooth sequence.Under external pressure,the circumferential stress is highest at the small end of the external thread,leading to yield deformation.The tensile strength of the joint obtained from the finite element model exhibits a relative error of less than 7%compared to the analytical and experimental values,proving the reliability of the finite element model.The tensile strength of the joint is 3091.9 k N.Moreover,in terms of anti-collapse capability,the joints demonstrate higher resistance to collapse compared to the casing body,which is consistent with the test results where the pipe body experiences collapse and failure while the joints remain intact during the experiment.The failure load of the casing body under external collapse pressure is 87.4 MPa.The present study provides a basic understanding of the mechanical strengths of extreme line casing joint. 展开更多
关键词 Extreme line casing Elastic-plastic mechanics Finite element analysis Tensile strength Collapse strength
下载PDF
Dynamic Analysis of A Deepwater Drilling Riser with A New Hang-off System
10
作者 LI Yan-wei LIU Xiu-quan +3 位作者 WANG Jin-long CHEN Guo-ming CHANG Yuan-jiang SHENG Lei-xiang 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期29-41,共13页
The safety of risers in hang-off states is a vital challenge in offshore oil and gas engineering.A new hang-off system installed on top of risers is proposed for improving the security of risers.This approach leads to... The safety of risers in hang-off states is a vital challenge in offshore oil and gas engineering.A new hang-off system installed on top of risers is proposed for improving the security of risers.This approach leads to a challenging problem:coupling the dynamics of risers with a new hang-off system combined with multiple structures and complex constraints.To accurately analyze the dynamic responses of the coupled system,a coupled dynamic model is established based on the Euler-Bernoulli beam-column theory and penalty function method.A comprehensive analysis method is proposed for coupled dynamic analysis by combining the finite element method and the Newmarkβmethod.An analysis program is also developed in MATLAB for dynamic simulation.The simulation results show that the dynamic performances of the risers at the top part are significantly improved by the new hang-off system,especially the novel design,which includes the centralizer and articulation joint.The bending moment and lateral deformation of the risers at the top part decrease,while the hang-off joint experiences a great bending moment at the bottom of the lateral restraint area which requires particular attention in design and application.The platform navigation speed range under the safety limits of risers expands with the new hang-off system in use. 展开更多
关键词 deepwater drilling riser new hang-off system dynamic analysis finite element method penalty function method
下载PDF
Comparison between seismic analysis of twisting and regular 52-story towers considering soil-structure interaction
11
作者 Mohamed Naguib Abouelsaad Mohammed Shaaban +1 位作者 Salah El Bagalaty Mohamed E.El Madawy 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期663-675,共13页
A dynamic analysis of both twisting and regular towers is carried out to determine the results of considering soil-structure interaction(SSI)on high-rise buildings.In addition,the difference between the seismic perfor... A dynamic analysis of both twisting and regular towers is carried out to determine the results of considering soil-structure interaction(SSI)on high-rise buildings.In addition,the difference between the seismic performance of using twisting towers over regular ones is investigated.The twisting tower is a simulation of the Evolution Tower(Moscow).The towers’skeletons consist of RC elements and rest on a reinforced concrete piled-raft foundation.The soil model is considered as multi-layered with the same soil properties as the zone chosen for the analysis(New Mansoura City,Egypt).The only difference between both towers is their shape in elevation.The whole system is modelled and analyzed in a single step as one full 3D model,which is known as the direct approach in SSI.All analyses are carried out using finite-element software(Midas GTS NX).Dynamic output responses due to three records of seismic loads are proposed and presented in some graphs.Based on the results,it is concluded that SSI has a considerable effect on the dynamic response of tall buildings mainly because of the foundation flexibility,as it leads to lengthening the vibration period,increasing the story drift and the base shear for both cases. 展开更多
关键词 soil-structure interaction seismic analysis twisting towers base shear story drift finite element method Midas GTS NX
下载PDF
Biomechanical analysis of an absorbable material for treating fractures of the inferior orbital wall
12
作者 Jin-Hai Yu Ze-Xi Sang +4 位作者 Huang Zhang Qi-Hua Xu Qin Huang Hong-Fei Liao Yao-Hua Wang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1331-1336,共6页
AIM:To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair.METHODS:The three-dimensional(3D)model of orbital blowout fractures was reconstructed using ... AIM:To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair.METHODS:The three-dimensional(3D)model of orbital blowout fractures was reconstructed using Mimics21.0 software.The repair guide plate model for inferior orbital wall fracture was designed using 3-matic13.0 and Geomagic wrap 21.0 software.The finite element model of orbital blowout fracture and absorbable repair plate was established using 3-matic13.0 and ANSYS Workbench 21.0 software.The mechanical response of absorbable plates,with thicknesses of 0.6 and 1.2 mm,was modeled after their placement in the orbit.Two patients with inferior orbital wall fractures volunteered to receive single-layer and double-layer absorbable plates combined with 3D printing technology to facilitate surgical treatment of orbital wall fractures.RESULTS:The finite element models of orbital blowout fracture and absorbable plate were successfully established.Finite element analysis(FEA)showed that when the Young’s modulus of the absorbable plate decreases to 3.15 MPa,the repair material with a thickness of 0.6 mm was influenced by the gravitational forces of the orbital contents,resulting in a maximum total deformation of approximately 3.3 mm.Conversely,when the absorbable plate was 1.2 mm thick,the overall maximum total deformation was around 0.4 mm.The half-year follow-up results of the clinical cases confirmed that the absorbable plate with a thickness of 1.2 mm had smaller maximum total deformation and better clinical efficacy.CONCLUSION:The biomechanical analysis observations in this study are largely consistent with the clinical situation.The use of double-layer absorbable plates in conjunction with 3D printing technology is recommended to support surgical treatment of infraorbital wall blowout fractures. 展开更多
关键词 orbital blowout fracture absorbable material finite element analysis 3D printing technology
下载PDF
Numerical Simulation-Based Analysis of the Impact of Overloading on Segmentally Assembled Bridges
13
作者 Donghui Ma Wenqi Wu +4 位作者 Yuan Li Lun Zhao Yingchun Cai Pan Guo Shaolin Yang 《Structural Durability & Health Monitoring》 EI 2024年第5期663-681,共19页
Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acti... Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acting on bridge structures.Accordingly,the influence of overloaded vehicles on existing assembled bridge structures is an urgent concern at present.This paper establishes thefinite element model of the segmentally assembled bridge based on ABAQUS software and analyzes the influence of vehicle overload on an assembled girder bridge struc-ture.First,afinite element model corresponding to the target bridge is established based on ABAQUS software,and the load is controlled to simulate vehicle movement in each area of the traveling zone at different times.Sec-ond,the key cross-sections of segmental girder bridges are monitored in real time based on the force character-istics of continuous girder bridges,and they are compared with the simulation results.Finally,a material damage ontology model is introduced,and the structural damage caused by different overloading rates is compared and analyzed.Results show that thefinite element modeling method is accurate by comparing with on-site measured data,and it is suitable for the numerical simulation of segmental girder bridges;Dynamic sensors installed at 1/4L,1/2L,and 3/4L of the segmental girder main beams could be used to identify the dynamic response of segmental girder bridges;The bottom plate of the segmental girder bridge is mostly damaged at the position where the length of the precast beam section changes and the midspan position.With the increase in load,damage in the direction of the bridge develops faster than that in the direction of the transverse bridge.Thefindings of this study can guide maintenance departments in the management and maintenance of bridges and vehicles. 展开更多
关键词 Segmentally assembled bridge dynamic response moving loads OVERLOADING structural damage finite element analysis
下载PDF
Loading Stress Analysis of Cement Concrete Pavement in Mountainous Areas
14
作者 Yu Pei Ziyi Lv +2 位作者 Jiatao Sun Shichen Liu Xinyong Liu 《Journal of Architectural Research and Development》 2024年第4期32-39,共8页
The suitable cement concrete pavement for mountainous areas is a form of low-cost cement concrete pavement that uses unconventional graded stones in different proportions in ordinary concrete,allowing the concrete to ... The suitable cement concrete pavement for mountainous areas is a form of low-cost cement concrete pavement that uses unconventional graded stones in different proportions in ordinary concrete,allowing the concrete to fully contact the stones and form a stable and well-bonded slab with large particle stones.As large particle stones replace a certain volume of cement concrete,they have good economic performance and are a low-cost form of cement concrete pavement.This study researches the use of ANSYS tools to analyze the influence of geometric dimensions and material properties of rigid pavement structural layers on the mechanical properties of pavement structures. 展开更多
关键词 Pavement engineering Suitable cement concrete pavement for mountainous areas Finite element analysis Mechanical property
下载PDF
Stress Distributions Created by Short and Regular Implants Placed in the Anterior Maxilla at Different Angles: A Finite Element Analysis
15
作者 Mehmet Fatih Özmen Funda Bayındır 《Open Journal of Stomatology》 2023年第1期32-49,共18页
Although short implants are seen as alternative treatments that require additional surgical techniques in posterior region, they can be applied to anterior maxilla and various studies are required on this subject. The... Although short implants are seen as alternative treatments that require additional surgical techniques in posterior region, they can be applied to anterior maxilla and various studies are required on this subject. The purpose of this study was to examine and compare the peak von Mises stress distributions in the crown, implant and abutment by using finite element analysis (FEA). Besides, a comparison of the implant-abutment connection types in the short implant with the FEA method was established. A short implant (4 × 5 mm) with a taper-lock connection and a regular implant (4 × 9 mm) with a screw connection were used in maxillary central incisor tooth area. Three different titanium abutments with 0?, 15? and 25? angles were used for abutments. In addition, in order to determine whether the stress change in short implants is due to the length of the implant-abutment connection, a screw was designed for a short implant and it was also evaluated in the same three angles. A total of three groups and nine models were generated. 114.6N load was applied to the cingulum area of the crown at an angle of 135? to the long axis of the crowns. A torque load of 25 Ncm was applied to the regular and short implant screw. Von Mises stress distributions of implants, abutments and crowns were evaluated by using FEA. Increased angle in implants increased von Mises stress values of implant, abutment and crown. Screw connection was found higher at all angles in short implants. Close values were found at different angles in taper-lock short implant crowns. The length and the angle in the bone of implant with the type of implant-abutment connection results in the accumulated stress values. Clinical Implications Taper implant-abutment connection system was found to be more promising in terms of stress accumulation in crowns. Although the amount of stress on the abutment increased due to the length of the implant in short implants, taper implant-abutment connection system slightly reduced related to this increase. 展开更多
关键词 Anterior Maxilla Finite element analysis Von Mises Short Implant
下载PDF
Elemental composition x-ray fluorescence analysis with a TES-based high-resolution x-ray spectrometer
16
作者 吴秉骏 夏经铠 +4 位作者 张硕 傅强 章辉 谢晓明 刘志 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期67-73,共7页
The accurate analysis of the elemental composition plays a crucial role in the research of functional materials.The emitting characteristic x-ray fluorescence(XRF)photons can be used for precisely discriminating the s... The accurate analysis of the elemental composition plays a crucial role in the research of functional materials.The emitting characteristic x-ray fluorescence(XRF)photons can be used for precisely discriminating the specified element.The detection accuracy of conventional XRF methodology using semiconductor detector is limited by the energy resolution,thus posing a challenge in accurately scaling the actual energy of each XRF photon.We adopt a novel high-resolution x-ray spectrometer based on the superconducting transition-edge sensor(TES)for the XRF spectroscopy measurement of different elements.Properties including high energy resolution,high detection efficiency and precise linearity of the new spectrometer will bring significant benefits in analyzing elemental composition via XRF.In this paper,we study the Ledge emission line profiles of three adjacent rare earth elements with the evenly mixed sample of their oxide components:terbium,dysprosium and holmium.Two orders of magnitude better energy resolution are obtained compared to a commercial silicon drift detector.With this TES-based spectrometer,the spectral lines overlapped or interfered by background can be clearly distinguished,thus making the chemical component analysis more accurate and quantitative.A database of coefficient values for the line strength of the spectrum can then be constructed thereafter.Equipped with the novel XRF spectrometer and an established coefficient database,a direct analysis of the composition proportion of a certain element in an unknown sample can be achieved with high accuracy. 展开更多
关键词 x-ray emission spectra and fluorescence superconducting transition-edge sensor rare earth elements chemical composition analysis
下载PDF
Error Analysis of A New Higher Order Boundary Element Method for A Uniform Flow Passing Cylinders
17
作者 SUN Shi-yan CUI Jie BAO Chao-ming 《China Ocean Engineering》 SCIE EI CSCD 2023年第3期369-377,共9页
A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity poten... A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity potential and its normal derivative.In present work,a new integral equation is derived for the tangential velocity.The boundary is discretized into higher order elements to ensure the continuity of slope at the element nodes.The velocity potential is also expanded with higher order shape functions,in which the unknown coefficients involve the tangential velocity.The expansion then ensures the continuities of the velocity and the slope of the boundary at element nodes.Through extensive comparison of the results for the analytical solution of cylinders,it is shown that the present HOBEM is much more accurate than the conventional BEM. 展开更多
关键词 higher order boundary element method(HOBEM) error analysis integral equations for potential and velocity cylinders
下载PDF
Modal and Thermal Analysis of a Modified Connecting Rod of an Internal Combustion Engine Using Finite Element Method
18
作者 Nkrumah Jacob Kwaku Baba Ziblim +1 位作者 Sulemana Yahaya Sherry Kwabla Amedorme 《Modeling and Numerical Simulation of Material Science》 2023年第3期29-49,共21页
The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connec... The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connecting rod for weight optimisation without losing the strength of the connecting rod. It considered modal and thermal analyses to investigate the suitability of the material for connecting rod design. The parameters that were considered under the modal analysis were: total deformation, and natural frequency, while the thermal analysis looked at the temperature distribution, total heat flux and directional heat flux of the four connecting rods made with titanium alloy, grey cast iron, structural steel and aluminium 7075 alloy respectively. The connecting rod was modelled using Autodesk inventor2017 software using the calculated parameters. The steady-state thermal analysis was used to determine the induced heat flux and directional heat flux. The study found that Aluminium 7075 alloy deformed more than the remaining three other materials but has superior qualities in terms of vibrational natural frequency, total heat flux and lightweight compared to structural steel, grey cast iron and titanium alloy. 展开更多
关键词 Connecting Rod Steady-State Thermal analysis DEFORMATION Heat Flux Thermal and Modal Finite element Method
下载PDF
Comprehensive Evaluation on the Irrigation Water Quality in Turpan City Based on Matter Element Analysis Method 被引量:1
19
作者 阿不都沙拉木.加拉力丁 王欣 师芸宏 《Agricultural Science & Technology》 CAS 2016年第1期239-244,共6页
Matter-element analysis method was used to construct the comprehensive matter-element model for the evaluation of the quality of various kinds of irrigation water in Turpan City to evaluate the quality of irrigation w... Matter-element analysis method was used to construct the comprehensive matter-element model for the evaluation of the quality of various kinds of irrigation water in Turpan City to evaluate the quality of irrigation water(such as river water,spring water, Karez well water, pumped well water) in Turpan City, Xinjiang. The results showed that the quality of the irrigation water was the best in October,which was in Grade I or Grade 2; in May, the quality of some of the irrigation water became poorer to Grade II, which was easy to soil salinization; in March, the detected qualities of the water samples water from the Meiyaogou basin were all in Grade IV, which was not suitable for farmland irrigation. The comparison on the evaluation results of matter-element analysis and fuzzy evaluation method showed that the results of the 2 methods were almost consistent with each other, and showed good uniformity. 展开更多
关键词 matter element analysis Irrigation water Water quality evaluation Turpan City
下载PDF
Study on Development of Light Aluminum Step by Using Finite Element Analysis
20
作者 WU Jianlong 《International Journal of Plant Engineering and Management》 2023年第4期232-248,共17页
In order to ensure the safe operation of the escalator,the step as a part of transporting passengers,the design will consider a high safety factor,which will increase the weight,the manufacturing cost,and the energy c... In order to ensure the safe operation of the escalator,the step as a part of transporting passengers,the design will consider a high safety factor,which will increase the weight,the manufacturing cost,and the energy consumption of the steps band operation.Therefore,in order to reduce the weight and ensure the strength and stiffness of the step,through the optimization design,the number of reinforcing rib supports of the step tread plate and riser plate is increased,and the thickness of the step tread plate and riser plate is moderately reduced,so as to achieve the purpose of reducing the weight of the step and reducing the manufacturing cost and operating energy consumption.Through the finite element analysis and testing of the new type step design,Its strength and stiffness fully meet the requirements of GB 16899-2011 and EN 115-1:2017 standards,and the breaking force also meets the industry standards,so that the manufacturing and operating costs of the product can be reduced to improve the competitiveness of the product market. 展开更多
关键词 light aluminum step DEVELOPMENT finite element analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部