Excellent results are obtained in structure analysis with jew phases of structure factors by the maximum-entropy method (MEM) for CaGaN PbCO3 and ReBe22 single crystals. The computation time and memory space are minim...Excellent results are obtained in structure analysis with jew phases of structure factors by the maximum-entropy method (MEM) for CaGaN PbCO3 and ReBe22 single crystals. The computation time and memory space are minimized by symmetry operations so that structure analysis by the MEM can be carried out with a personal computer.展开更多
Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ...Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.展开更多
针对直驱风电场经柔性直流输电(voltage source converter based high voltage direct current,VSC-HVDC)并网系统的次同步振荡(subsynchronous oscillation,SSO)问题,目前研究在机理分析中难以揭示子系统之间的扰动传递过程和耦合关系...针对直驱风电场经柔性直流输电(voltage source converter based high voltage direct current,VSC-HVDC)并网系统的次同步振荡(subsynchronous oscillation,SSO)问题,目前研究在机理分析中难以揭示子系统之间的扰动传递过程和耦合关系,同时难以量化不同特性对于系统稳定的影响。因此,基于路径分析法开展系统的SSO机理研究,并以锁相环(phase-locked loop,PLL)振荡模态为例开展路径分析法的模态扩展。首先,采用模块化建模方法建立系统的线性化模型。其次,将转子运动方程的阻尼系数推广至振荡模态的主导元件动态方程,从而获取系统的稳定判据。然后,基于路径分析揭示子系统之间的扰动传递过程和耦合关系,基于阻尼分解量化风电场内部特性以及风电场与VSC-HVDC之间交互作用特性对于系统稳定的影响。最后,开展PLL控制参数对于阻尼特性的影响分析。结果表明:路径分析法可以应用于不同的振荡模态;直驱风电场与VSC-HVDC之间的扰动传递路径呈现双闭环耦合关系;通过增大直驱风电机组PLL比例系数或减小直驱风电机组PLL积分系数可以有效提高系统的总阻尼系数,从而提升系统的稳定性。展开更多
Rapid urbanization has led to a surge in the number of towering structures,and overturning is widely used because it can better accommodate the construction of shaped structures such as variable sections.The complexit...Rapid urbanization has led to a surge in the number of towering structures,and overturning is widely used because it can better accommodate the construction of shaped structures such as variable sections.The complexity of the construction process makes the construction risk have certain randomness,so this paper proposes a cloudbased coupled matter-element model to address the ambiguity and randomness in the safety risk assessment of overturning construction of towering structures.In the pretended model,the digital eigenvalues of the cloud model are used to replace the eigenvalues in the matter–element basic element,and calculate the cloud correlation of the risk assessment metrics through the correlation algorithm of the cloud model to build the computational model.Meanwhile,the improved hierarchical analysis method based on the cloud model is used to determine the weight of the index.The comprehensive evaluation scores of the evaluation event are then obtained through the weighted average method,and the safety risk level is determined accordingly.Through empirical analysis,(1)the improved hierarchical analysis method based on the cloud model can incorporate the data of multiple decisionmakers into the calculation formula to determine theweights,which makes the assessment resultsmore credible;(2)the evaluation results of the cloud-basedmatter-element coupledmodelmethod are basically consistent with those of the other two commonly used methods,and the confidence factor is less than 0.05,indicating that the cloudbased physical element coupled model method is reasonable and practical for towering structure overturning;(3)the cloud-based coupled element model method,which confirms the reliability of risk level by performing Spearman correlation on comprehensive assessment scores,can provide more comprehensive information of instances compared with other methods,and more comprehensively reflects the fuzzy uncertainty relationship between assessment indexes,which makes the assessment results more realistic,scientific and reliable.展开更多
文摘Excellent results are obtained in structure analysis with jew phases of structure factors by the maximum-entropy method (MEM) for CaGaN PbCO3 and ReBe22 single crystals. The computation time and memory space are minimized by symmetry operations so that structure analysis by the MEM can be carried out with a personal computer.
文摘Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.
文摘针对直驱风电场经柔性直流输电(voltage source converter based high voltage direct current,VSC-HVDC)并网系统的次同步振荡(subsynchronous oscillation,SSO)问题,目前研究在机理分析中难以揭示子系统之间的扰动传递过程和耦合关系,同时难以量化不同特性对于系统稳定的影响。因此,基于路径分析法开展系统的SSO机理研究,并以锁相环(phase-locked loop,PLL)振荡模态为例开展路径分析法的模态扩展。首先,采用模块化建模方法建立系统的线性化模型。其次,将转子运动方程的阻尼系数推广至振荡模态的主导元件动态方程,从而获取系统的稳定判据。然后,基于路径分析揭示子系统之间的扰动传递过程和耦合关系,基于阻尼分解量化风电场内部特性以及风电场与VSC-HVDC之间交互作用特性对于系统稳定的影响。最后,开展PLL控制参数对于阻尼特性的影响分析。结果表明:路径分析法可以应用于不同的振荡模态;直驱风电场与VSC-HVDC之间的扰动传递路径呈现双闭环耦合关系;通过增大直驱风电机组PLL比例系数或减小直驱风电机组PLL积分系数可以有效提高系统的总阻尼系数,从而提升系统的稳定性。
基金funded by China Railway No.21 Bureau Group No.1 Engineering Co.,Ltd.,Grant No.202209140002.
文摘Rapid urbanization has led to a surge in the number of towering structures,and overturning is widely used because it can better accommodate the construction of shaped structures such as variable sections.The complexity of the construction process makes the construction risk have certain randomness,so this paper proposes a cloudbased coupled matter-element model to address the ambiguity and randomness in the safety risk assessment of overturning construction of towering structures.In the pretended model,the digital eigenvalues of the cloud model are used to replace the eigenvalues in the matter–element basic element,and calculate the cloud correlation of the risk assessment metrics through the correlation algorithm of the cloud model to build the computational model.Meanwhile,the improved hierarchical analysis method based on the cloud model is used to determine the weight of the index.The comprehensive evaluation scores of the evaluation event are then obtained through the weighted average method,and the safety risk level is determined accordingly.Through empirical analysis,(1)the improved hierarchical analysis method based on the cloud model can incorporate the data of multiple decisionmakers into the calculation formula to determine theweights,which makes the assessment resultsmore credible;(2)the evaluation results of the cloud-basedmatter-element coupledmodelmethod are basically consistent with those of the other two commonly used methods,and the confidence factor is less than 0.05,indicating that the cloudbased physical element coupled model method is reasonable and practical for towering structure overturning;(3)the cloud-based coupled element model method,which confirms the reliability of risk level by performing Spearman correlation on comprehensive assessment scores,can provide more comprehensive information of instances compared with other methods,and more comprehensively reflects the fuzzy uncertainty relationship between assessment indexes,which makes the assessment results more realistic,scientific and reliable.