期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Organic matter and concentrated nitrogen removal by shortcut nitrification and denitrification from mature municipal landfill leachate 被引量:16
1
作者 ZHANG Shu-jun PENG Yong-zhen WANG Shu-ying ZHENG Shu-wen GUO Jin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第6期647-651,共5页
An UASB+Anoxic/Oxic (A/O) system was introduced to treat a mature landfill leachate with low carbon-to-nitrogen ratio and high ammonia concentration. To make the best use of the biodegradable COD in the leaehate, t... An UASB+Anoxic/Oxic (A/O) system was introduced to treat a mature landfill leachate with low carbon-to-nitrogen ratio and high ammonia concentration. To make the best use of the biodegradable COD in the leaehate, the denitrifieation of NOx^--N in the reeireulation effluent from the elarifier was carried out in the UASB. The results showed that most biodegradable organic matters were removed by the denitrifieation in the UASB. The NH4^+-N loading rate (ALR) of A/O reactor and operational temperature was 0.28- 0.60 kg NH4^+-N/(m^3-d) and 17-29℃ during experimental period, respectively. The short-cut nitrification with nitrite accumulation efficiency of 90%-99% was stabilized during the whole experiment. The NH4^+-N removal efficiency varied between 90% and 100%. When ALR was less than 0.45 kg NH4^+-N/(m^3.d), the NH4^+-N removal efficiency was more than 98%. With the influent NH4^+-N of 1200-1800 mg/L, the effluent NH4^+-N was less than 15 mg/L. The shortcut nitrification and denitrifieation can save 40% carbon source, with a highly efficient denitrifieation taking place in the UASB. When the ratio of the feed COD to feed NH4^+-N was only 2-3, the total inorganic nitrogen (TIN) removal efficiency attained 67%-80%. Besides, the sludge samples from A/O reactor were analyzed using FISH. The FISH analysis revealed that ammonia oxidation bacteria (AOB) accounted for 4% of the total eubaeterial population, whereas nitrite oxidation bacteria (NOB) accounted only for 0.2% of the total eubaeterial population. 展开更多
关键词 mature landfill leachate UASB+A/O shortcut nitrification carbon source
下载PDF
剩余污泥有机质资源回收利用原位驱动晚期垃圾渗滤液深度脱氮——一种具有显著能源优势的创新生物技术
2
作者 Fangzhai Zhang Shang Ren +4 位作者 Haoran Liang Zhaozhi Wang Ying Yan Jiahui Wang Yongzhen Peng 《Engineering》 SCIE EI CAS CSCD 2024年第3期120-132,共13页
The sustainable recovery and utilization of sludge bioenergy within a circular economy context has drawn increasing attention,but there is currently a shortage of reliable technology.This study presents an innovative ... The sustainable recovery and utilization of sludge bioenergy within a circular economy context has drawn increasing attention,but there is currently a shortage of reliable technology.This study presents an innovative biotechnology based on free nitrous acid(FNA)to realize sustainable organics recovery from waste activated sludge(WAS)in-situ,driving efficient nitrogen removal from ammonia rich mature landfill leachate by integrating partial nitrification,fermentation,and denitrification process(PN/DN-F/DN).First,ammonia((1708.5±142.9)mg·L^(-1))in mature landfill leachate is oxidized to nitrite in the aerobic stage of a partial nitrification coupling denitrification(PN/DN)sequencing batch reactor(SBR),with nitrite accumulation ratio of 95.4%±2.5%.Then,intermediate effluent(NO_(2)^(-)-N=(1196.9±184.2)mg·L^(-1))of the PN/DN-SBR,along with concentrated WAS(volatile solids(VSs)=(15119.8±2484.2)mg·L^(-1)),is fed into an anoxic reactor for fermentation coupling denitrification process(F/DN).FNA,the protonated form of nitrite,degrades organics in the WAS to the soluble fraction by the biocidal effect,and the released organics are utilized by denitrifiers to drive NOx-reduction.An ultra-fast sludge reduction rate of 4.89 kg·m^(-3)·d^(-1) and nitrogen removal rate of 0.46 kg·m^(-3)·d^(-1) were realized in the process.Finally,F/DN-SBR effluent containing organics is refluxed to PN/DN-SBR for secondary denitrification in the post anoxic stage.After 175 d operation,an average of 19350.6 mg chemical oxygen demand organics were recovered per operational cycle,with 95.2%nitrogen removal and 53.4%sludge reduction.PN/DN-F/DN is of great significance for promoting a paradigm transformation from energy consumption to energy neutral,specifically,the total benefit in equivalent terms of energy was 291.8 kW·h·t^(-1) total solid. 展开更多
关键词 Waste activated sludge Bioresource recovery Simultaneous treatment of wastewater and sludge mature landfill leachate Free nitrous acid
下载PDF
Optimization of process parameters for mature landfill leachate pretreatment using MAP precipitation 被引量:9
3
作者 Wei LI Xiaowen DING +2 位作者 Min LIU Yuewen GUO Lei LIU 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2012年第6期892-900,共9页
Chemical precipitation is a useful technology as a pretreatment to treat mature landfill leachate with high concentrations of ammonium-nitrogen (NH+-N) and refractory organic compounds. Orthogonal experiments and f... Chemical precipitation is a useful technology as a pretreatment to treat mature landfill leachate with high concentrations of ammonium-nitrogen (NH+-N) and refractory organic compounds. Orthogonal experiments and factorial experiments were carried out to determine the optimal conditions enhancing the magnesium ammonium phosphate (MAP) precipitation process, and the experi- mental results demonstrated that the removal rate of NH+ -N was more than 85% when MgO and NaHEPO4.2H20 were applied as external sources of magnesium and phosphorous under the optimal conditions that molar ratio n(Mg):n(N):n(P) = 1.4:1:0.8, reaction time 60 min, original pH of leachate and settling time 30 min. In the precipitation process, pH could be maintained at the optimal range of 8-9.5 because MgO could release hydroxide ions to consume hydrogen ions. Calcium ions and carbonate ions existed in the leachate could affect the precipitation process, which resulted in the decrease of NH+-N removal efficiency. The residues of MAP sediments decomposed by heating under alkaline condi- tions can be reused as the sources of phosphorous and magnesium for the removal of high concentrations of NH4+ -N, and up to 90% of ammonium could be released under molar ratio of n[OH]:n[MAP] = 2.5: 1, heating temperature 90℃ and heating time 2h. 展开更多
关键词 magnesium ammonium phosphate precipita-tion mature landfill leachate OPTIMIZATION ammonium-nitrogen
原文传递
Stable partial nitritation of mature landfill leachate in a continuous flow bioreactor:Long-term performance,microbial community evolution,and mechanisms 被引量:1
4
作者 Xiaoling Hu Jianyang Song +9 位作者 Yantong Ji Chaojing Li Jia Wei Wanlin Lyu Bin Wang Wenbin Guo Rongfan Chen Hongyu Wang Dao Zhou Qian Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第11期255-262,共8页
A continuous flow bioreactor was operated for 300 days to investigate partial nitritation(PN)of mature landfill leachate,establishing the long-term performance of the system in terms of the microbial community composi... A continuous flow bioreactor was operated for 300 days to investigate partial nitritation(PN)of mature landfill leachate,establishing the long-term performance of the system in terms of the microbial community composition,evolution,and interactions.The stable operation phase(31-300 d)began after a 30 days of start-up period,reaching an average nitrite accumulation ratio(NAR)of 94.43%and a ratio of nitrite nitrogen to ammonia nitrogen(NO_(2)^(−)-N/NH_(4)^(+)-N)of 1.16.Some fulvic-like and humic-like compounds and proteins were effectively degraded in anaerobic and anoxic tanks,which was consistent with the corresponding abundance of methanogens and syntrophic bacteria in the anaerobic tank,and organic matter degrading bacteria in the anoxic tank.The ammonia-oxidizing bacteria(AOB)Nitrosomonas was found to be the key functional bacteria,exhibiting an increase in abundance from 0.27%to 6.38%,due to its collaborative interactions with organic matter degrading bacteria.In-situ inhibition of nitrite-oxidizing bacteria(NOB)was achieved using a combination of free ammonia(FA)and free nitrous acid(FNA),low dissolved oxygen(DO)with fewer bioavailable organics conditions were employed to maintain stable PN and a specific ratio of NO_(2)^(−)-N/NH_(4)^(+)-N,without an adverse impact on AOB.The synergistic relationships between AOB and both denitrifying bacteria and organic matter degrading bacteria,were found to contribute to the enhanced PN performance and microbial community structure stability.These findings provide a theoretical guidance for the effective application of PN-Anammox for mature landfill leachate treatment. 展开更多
关键词 Partial nitritation mature landfill leachate Microbial community NITROSOMONAS Continuous flow bioreactor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部