期刊文献+
共找到448篇文章
< 1 2 23 >
每页显示 20 50 100
Multi-Granularity Neighborhood Fuzzy Rough Set Model on Two Universes
1
作者 Ju Wang Xinghu Ai Li Fu 《Journal of Intelligent Learning Systems and Applications》 2024年第2期91-106,共16页
The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborho... The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborhood rough sets to two universes multi-granularity fuzzy rough sets, and discusses the two-universes multi-granularity neighborhood fuzzy rough set model. Firstly, the upper and lower approximation operators are defined in the two universes multi-granularity neighborhood fuzzy rough set model. Secondly, the properties of the upper and lower approximation operators are discussed. Finally, the properties of the two universes multi-granularity neighborhood fuzzy rough set model are verified through case studies. 展开更多
关键词 Fuzzy set Two Universes Multi-Granularity rough set Multi-Granularity neighborhood Fuzzy rough set
下载PDF
Attribute Reduction of Neighborhood Rough Set Based on Discernment
2
作者 Biqing Wang 《Journal of Electronic Research and Application》 2024年第1期80-85,共6页
For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm u... For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm using discernment as the heuristic information was proposed.The reduction algorithm comprehensively considers the dependency degree and neighborhood granulation degree of attributes,allowing for a more accurate measurement of the importance degrees of attributes.Example analyses and experimental results demonstrate the feasibility and effectiveness of the algorithm. 展开更多
关键词 neighborhood rough set Attribute reduction DISCERNMENT ALGORITHM
下载PDF
Multi-Span and Multiple Relevant Time Series Prediction Based on Neighborhood Rough Set 被引量:1
3
作者 Xiaoli Li Shuailing Zhou +1 位作者 Zixu An Zhenlong Du 《Computers, Materials & Continua》 SCIE EI 2021年第6期3765-3780,共16页
Rough set theory has been widely researched for time series prediction problems such as rainfall runoff.Accurate forecasting of rainfall runoff is a long standing but still mostly signicant problem for water resource ... Rough set theory has been widely researched for time series prediction problems such as rainfall runoff.Accurate forecasting of rainfall runoff is a long standing but still mostly signicant problem for water resource planning and management,reservoir and river regulation.Most research is focused on constructing the better model for improving prediction accuracy.In this paper,a rainfall runoff forecast model based on the variable-precision fuzzy neighborhood rough set(VPFNRS)is constructed to predict Watershed runoff value.Fuzzy neighborhood rough set dene the fuzzy decision of a sample by using the concept of fuzzy neighborhood.The fuzzy neighborhood rough set model with variable-precision can reduce the redundant attributes,and the essential equivalent data can improve the predictive capabilities of model.Meanwhile VFPFNRS can handle the numerical data,while it also deals well with the noise data.In the discussed approach,VPFNRS is used to reduce superuous attributes of the original data,the compact data are employed for predicting the rainfall runoff.The proposed method is examined utilizing data in the Luo River Basin located in Guangdong,China.The prediction accuracy is compared with that of support vector machines and long shortterm memory(LSTM).The experiments show that the method put forward achieves a higher predictive performance. 展开更多
关键词 Rainfall and runoff variable precision fuzzy neighborhood rough set LSTM MULTI-SPAN
下载PDF
Two-Layer Information Granulation:Mapping-Equivalence Neighborhood Rough Set and Its Attribute Reduction
4
作者 Changshun Liu Yan Liu +1 位作者 Jingjing Song Taihua Xu 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2059-2075,共17页
Attribute reduction,as one of the essential applications of the rough set,has attracted extensive attention from scholars.Information granulation is a key step of attribute reduction,and its efficiency has a significa... Attribute reduction,as one of the essential applications of the rough set,has attracted extensive attention from scholars.Information granulation is a key step of attribute reduction,and its efficiency has a significant impact on the overall efficiency of attribute reduction.The information granulation of the existing neighborhood rough set models is usually a single layer,and the construction of each information granule needs to search all the samples in the universe,which is inefficient.To fill such gap,a new neighborhood rough set model is proposed,which aims to improve the efficiency of attribute reduction by means of two-layer information granulation.The first layer of information granulation constructs a mapping-equivalence relation that divides the universe into multiple mutually independent mapping-equivalence classes.The second layer of information granulation views each mapping-equivalence class as a sub-universe and then performs neighborhood informa-tion granulation.A model named mapping-equivalence neighborhood rough set model is derived from the strategy of two-layer information granulation.Experimental results show that compared with other neighborhood rough set models,this model can effectively improve the efficiency of attribute reduction and reduce the uncertainty of the system.The strategy provides a new thinking for the exploration of neighborhood rough set models and the study of attribute reduction acceleration problems. 展开更多
关键词 Attribute reduction information granulation mapping-equiva-lence relation neighborhood rough set
下载PDF
Self-organizing Map Method Based on Real Rough Sets Space and Its Application of Pattern Recognition 被引量:2
5
作者 肖迪 胡寿松 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第1期72-76,共5页
This paper presents a real rough sets space and corresponding concepts of real lower and upper approximation sets which correspond to the real-valued attributes. Therefore, the real rough sets space can be investigate... This paper presents a real rough sets space and corresponding concepts of real lower and upper approximation sets which correspond to the real-valued attributes. Therefore, the real rough sets space can be investigated directly. A rhombus neighborhood for SOM is proposed, and the combination of SOM and rough sets theory is explored. According to the distance between the weight of winner node and the input vector in the real rough sets space, new weight learning rules are defined. The modified method makes the classification of the output of SOM clearer and the intervals of different classes larger. Finally, an example based on fault identification of an aircraft actuator is presented, The result of the simulation shows that this method is right and effective. 展开更多
关键词 rough sets theory self-organlzlng map real value rough set rhombus neighborhood pattern recognition
下载PDF
Generalization Rough Set Theory 被引量:2
6
作者 肖迪 张军峰 胡寿松 《Journal of Donghua University(English Edition)》 EI CAS 2008年第6期654-658,共5页
In order to avoid the discretization in the classical rough set theory, a generlization rough set theory is proposed. At first, the degree of general importance of an attribute and attribute subsets are presented. The... In order to avoid the discretization in the classical rough set theory, a generlization rough set theory is proposed. At first, the degree of general importance of an attribute and attribute subsets are presented. Then, depending on the degree of general importance of attribute, the space distance can be measured with weighted method. At last, a generalization rough set theory based on the general near neighborhood relation is proposed. The proposed theory partitions the universe into the tolerant modules, and forms lower approximation and upper approximation of the set under general near neighborhood relationship, which avoids the discretization in Pawlak's rough set theory. 展开更多
关键词 generalization rough set theory the degree of general importance general near neighborhood relation
下载PDF
Granular Computing on Partitions, Coverings and Neighborhood Systems 被引量:1
7
作者 Tsau.Young Lin 《南昌工程学院学报》 CAS 2006年第2期1-7,共7页
Granular Computing on partitions(RST),coverings(GrCC) and neighborhood systems(LNS) are examined: (1) The order of generality is RST, GrCC, and then LNS. (2) The quotient structure: In RST, it is called quotient set. ... Granular Computing on partitions(RST),coverings(GrCC) and neighborhood systems(LNS) are examined: (1) The order of generality is RST, GrCC, and then LNS. (2) The quotient structure: In RST, it is called quotient set. In GrCC, it is a simplical complex, called the nerve of the covering in combinatorial topology. For LNS, the structure has no known description. (3) The approximation space of RST is a topological space generated by a partition, called a clopen space. For LNS, it is a generalized/pretopological space which is more general than topological space. For GrCC,there are two possibilities. One is a special case of LNS,which is the topological space generated by the covering. There is another topological space, the topology generated by the finite intersections of the members of a covering The first one treats covering as a base, the second one as a subbase. (4) Knowledge representations in RST are symbol-valued systems. In GrCC, they are expression-valued systems. In LNS, they are multivalued system; reported in 1998 . (5) RST and GRCC representation theories are complete in the sense that granular models can be recaptured fully from the knowledge representations. 展开更多
关键词 granular computing neighborhood system rough set TOPOLOGY simplicial complex
下载PDF
Generalized multi-layered granulations and approximations based on neighborhood systems under incomplete information systems
8
作者 何明 冯博琴 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第2期205-208,共4页
A generalized multi-layered granulation structure used by neighborhood systems is proposed. With granulated views, the concepts of approximations under incomplete information systems are studied, which are represented... A generalized multi-layered granulation structure used by neighborhood systems is proposed. With granulated views, the concepts of approximations under incomplete information systems are studied, which are represented by covering of the universe. With respect to different levels of granulations, a pair of lower and upper approximations is defined and an approximation structure is investigated, which lead to a more general approximation structure. The generalized multi-layered granulation structure provides a basis of the proposed framework of granular computing. Using this framework, the interesting and useful results about information granulation and approximation reasoning can be obtained. This paper presents some useful explorations about the incomplete information systems from information views. 展开更多
关键词 rough set APPROXIMATIONS neighborhood systems granular computing
下载PDF
The Rough Method for Spatial Data Subzone Similarity Measurement
9
作者 Weihua Liao 《Journal of Geographic Information System》 2012年第1期37-45,共9页
There are two methods for GIS similarity measurement problem, one is cross-coefficient for GIS attribute similarity measurement, and the other is spatial autocorrelation that is based on spatial location. These method... There are two methods for GIS similarity measurement problem, one is cross-coefficient for GIS attribute similarity measurement, and the other is spatial autocorrelation that is based on spatial location. These methods can not calculate subzone similarity problem based on universal background. The rough measurement based on membership function solved this problem well. In this paper, we used rough sets to measure the similarity of GIS subzone discrete data, and used neighborhood rough sets to calculate continuous data’s upper and lower approximation. We used neighborhood particle to calculate membership function of continuous attribute, then to solve continuous attribute’s subzone similarity measurement problem. 展开更多
关键词 SUBZONE rough setS neighborhood rough setS SIMILARITY MEASUREMENT
下载PDF
基于邻域优势粗糙集的区分度动态属性约简算法
10
作者 张海玉 贾润亮 《计算机工程与设计》 北大核心 2024年第8期2320-2328,共9页
为解决动态环境下数值型偏序关系数据的属性约简问题,利用优势粗糙集的区分度提出一种增量式属性约简算法。在数值型信息系统环境下,定义邻域优势区分度度量,通过邻域优势区分度设出一种非增量式属性约简算法;研究和分析对象变化场景下... 为解决动态环境下数值型偏序关系数据的属性约简问题,利用优势粗糙集的区分度提出一种增量式属性约简算法。在数值型信息系统环境下,定义邻域优势区分度度量,通过邻域优势区分度设出一种非增量式属性约简算法;研究和分析对象变化场景下邻域优势区分度进行增量式更新的原理;分别提出数据对象增加和减少情形下数据集属性约简的增量式更新算法。在多个UCI数据集上进行实验验证,实验结果表明,该增量式算法能够有效完成动态数据的属性约简任务。 展开更多
关键词 数值型 偏序关系数据 属性约简 优势粗糙集 邻域关系 区分度 增量式学习
下载PDF
区间值决策表中基于相对优势邻域粒度的属性约简
11
作者 张晓燕 李璐 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期67-76,共10页
现实生活中大量数据以区间值形式存在,此时区间值决策表并不是基于等价关系,传统的决策方法并不能解决这一问题.为此,本文在区间值决策表中引入相邻关系、相邻类的定义,进而由相邻类建立了区间决策表的相对优势邻域粒度,拓展了经典决策... 现实生活中大量数据以区间值形式存在,此时区间值决策表并不是基于等价关系,传统的决策方法并不能解决这一问题.为此,本文在区间值决策表中引入相邻关系、相邻类的定义,进而由相邻类建立了区间决策表的相对优势邻域粒度,拓展了经典决策信息系统的相关方法,并利用相对优势邻域粒度研究了区间决策表属性约简的启发式算法,通过具体案例将得到的属性约简结果与代数约简进行了有效性验证,进一步丰富和完善了信息系统属性约简理论. 展开更多
关键词 粗糙集 区间值决策表 相邻关系 相对优势领域粒度 属性约简
下载PDF
一种属性变化局部变精度邻域粗糙集动态算法
12
作者 王美丽 赵佳怡 冯卫兵 《河南科技大学学报(自然科学版)》 CAS 北大核心 2024年第4期79-87,M0007,M0008,共11页
传统的邻域粗糙集模型对混合型数据的抗噪能力和计算效率低下,基于矩阵理论建立了一种属性动态变化的局部变精度邻域粗糙集模型。在局部对角矩阵和中间矩阵的更新规律的基础上,构建了混合信息系统局部变精度邻域粗糙集下近似的动态更新... 传统的邻域粗糙集模型对混合型数据的抗噪能力和计算效率低下,基于矩阵理论建立了一种属性动态变化的局部变精度邻域粗糙集模型。在局部对角矩阵和中间矩阵的更新规律的基础上,构建了混合信息系统局部变精度邻域粗糙集下近似的动态更新机制,提出了一种新的属性变化的局部变精度邻域粗糙集动态算法。通过实验分析可知:所提出的动态算法具有较高的计算效率和良好的稳健性。 展开更多
关键词 局部变精度邻域粗糙集 混合信息系统 属性集变化 动态更新机制
下载PDF
随机多属性子空间的ReliefF加权邻域粗糙集与属性约简
13
作者 王莉 《计算机工程与应用》 CSCD 北大核心 2024年第8期69-77,共9页
属性约简是一种重要的数据降维预处理方法,然而现有的属性约简方法大多没有考虑信息系统中属性权重的信息。ReliefF算法是一种实现简单且运算效率高的属性权重评估方法,提出一种随机多属性子空间的ReliefF加权邻域粗糙集和属性约简算法... 属性约简是一种重要的数据降维预处理方法,然而现有的属性约简方法大多没有考虑信息系统中属性权重的信息。ReliefF算法是一种实现简单且运算效率高的属性权重评估方法,提出一种随机多属性子空间的ReliefF加权邻域粗糙集和属性约简算法。该方法生成了多组具有相同大小随机子空间的属性集划分,并对每组划分的随机子空间利用ReliefF算法计算得到属性的局部权重,将所有组得到的属性局部权重求取平均值,得到了信息系统每个属性最终的全局权重;基于属性权重的结果,提出一种新的加权邻域粗糙集模型,并证明了相关理论和性质;在该模型的基础上通过加权邻域依赖度提出一种信息系统的属性约简算法。在公开数据集上的属性约简实验结果表明,所提出的属性约简算法比已有的同类型算法整体上具有更优的约简性能。 展开更多
关键词 属性约简 RELIEFF算法 随机子空间 加权邻域 邻域粗糙集模型
下载PDF
F-粗糙集的拓展与应用
14
作者 邓大勇 沈文新 《浙江师范大学学报(自然科学版)》 CAS 2024年第4期381-390,共10页
F-粗糙集是第1个动态粗糙集模型,具有良好的兼容性、表达能力以及动态性,但绝大多数粗糙集模型动态性不足.为了明晰粗糙集模型的动态性,拓展F-粗糙集的应用,综述了F-粗糙集研究的现状和发展,证明了多粒度粗糙集、多粒度邻域粗糙集和多... F-粗糙集是第1个动态粗糙集模型,具有良好的兼容性、表达能力以及动态性,但绝大多数粗糙集模型动态性不足.为了明晰粗糙集模型的动态性,拓展F-粗糙集的应用,综述了F-粗糙集研究的现状和发展,证明了多粒度粗糙集、多粒度邻域粗糙集和多尺度信息系统中的粗糙集可以用F-粗糙集表示.此外,还研究了F-粗糙集的可拓性,并建议将其他粗糙集模型与F-粗糙集相结合,使它们在处理动态数据、增量数据和海量数据时具有更强的能力.研究结果将提高其他粗糙集模型的动态性,有利于粗糙集进一步应用到大数据领域. 展开更多
关键词 粗糙集 F-粗糙集 多粒度粗糙集 多粒度邻域粗糙集 多尺度信息系统
下载PDF
基于Spark和NRSCA策略的并行深度森林算法
15
作者 毛伊敏 刘绍芬 《计算机应用研究》 CSCD 北大核心 2024年第1期126-133,共8页
针对并行深度森林在大数据环境下存在冗余及无关特征过多、两端特征利用率过低、模型收敛速度慢以及级联森林并行效率低等问题,提出了基于Spark和NRSCA策略的并行深度森林算法——PDF-SNRSCA。首先,该算法提出了基于邻域粗糙集和Fisher ... 针对并行深度森林在大数据环境下存在冗余及无关特征过多、两端特征利用率过低、模型收敛速度慢以及级联森林并行效率低等问题,提出了基于Spark和NRSCA策略的并行深度森林算法——PDF-SNRSCA。首先,该算法提出了基于邻域粗糙集和Fisher score的特征选择策略(FS-NRS),通过衡量特征的相关性和冗余度,对特征进行过滤,有效减少了冗余及无关特征的数量;其次,提出了一种随机选择和等距提取的扫描策略(S-RSEE),保证了所有特征能够同概率被利用,解决了多粒度扫描两端特征利用率低的问题;最后,结合Spark框架,实现级联森林并行化训练,提出了基于重要性指数的特征筛选机制(FFM-II),筛选出非关键性特征,平衡增强类向量与原始类向量维度,从而加快模型收敛速度,同时设计了基于SCA的任务调度机制(TSM-SCA),将任务重新分配,保证集群负载均衡,解决了级联森林并行效率低的问题。实验表明,PDF-SNRSCA算法能有效提高深度森林的分类效果,且对深度森林并行化训练的效率也有大幅提升。 展开更多
关键词 并行深度森林算法 Spark框架 邻域粗糙集 正弦余弦算法 多粒度扫描
下载PDF
基于异类粒球分离度的自适应属性约简
16
作者 黄兵 孙可 《闽南师范大学学报(自然科学版)》 2024年第3期1-16,共16页
属性约简是处理大规模数据集的关键步骤,与传统的邻域粗糙集(NRS)相比,粒球邻域粗糙集(GBNRS)可以显著提高属性约简的性能.然而,目前GBNRS属性约简算法生成了太多不必要的粒球;从而极大降低了算法运行效率.文章首先定义了一种新的粒球... 属性约简是处理大规模数据集的关键步骤,与传统的邻域粗糙集(NRS)相比,粒球邻域粗糙集(GBNRS)可以显著提高属性约简的性能.然而,目前GBNRS属性约简算法生成了太多不必要的粒球;从而极大降低了算法运行效率.文章首先定义了一种新的粒球质量指标来控制生成自适应数量的粒球;然后通过粒球对样本集进行划分,将不同类别的样本点放入不同类别的粒球;最后根据不同属性集合下粒球中正域样本的数量来进行前向属性约简.为了验证算法的有效性,在12个真实数据集上将提出的算法与其他NRS属性约简算法进行了对比实验.实验结果表明,所提出的算法有更高的精度和更快的运行效率. 展开更多
关键词 自适应粒球 属性约简 粒球邻域粗糙集 邻域粗糙集 分离度
下载PDF
基于邻域粗集神经网络的大数据特征分类系统
17
作者 朱磊 凌嘉敏 《电子设计工程》 2024年第7期97-100,105,共5页
为提升主机元件对大数据的分类准确性,尽可能地避免数据误传,提出基于邻域粗集神经网络的大数据特征分类系统。在邻域粗集神经网络中,完成对邻域系数的粒化处理,通过逼近运算的方式,使神经网络模型快速趋于稳定。选取大数据特征调制信息... 为提升主机元件对大数据的分类准确性,尽可能地避免数据误传,提出基于邻域粗集神经网络的大数据特征分类系统。在邻域粗集神经网络中,完成对邻域系数的粒化处理,通过逼近运算的方式,使神经网络模型快速趋于稳定。选取大数据特征调制信息,借助调制识别器元件控制大数据特征的导出方向,结合关联信道组织完成数据特征的多标合并处理。实验表明,利用该系统可将大数据的单位召回率提升至65%,能够促进主机元件对大数据的准确分类。 展开更多
关键词 邻域粗集 神经网络 大数据特征 粒化处理 调制识别器 多标合并
下载PDF
广义多粒度双量化邻域粗糙集
18
作者 孙文鑫 《兰州文理学院学报(自然科学版)》 2024年第3期15-23,共9页
针对实数型数据的信息量化问题,引入相对概念和绝对基数构建了广义多粒度双量化邻域粗糙集模型.首先,通过I型和II型广义多粒度上、下邻域特征支撑函数构建两类广义多粒度上、下邻域近似算子并讨论其性质;其次,讨论了两种广义多粒度邻域... 针对实数型数据的信息量化问题,引入相对概念和绝对基数构建了广义多粒度双量化邻域粗糙集模型.首先,通过I型和II型广义多粒度上、下邻域特征支撑函数构建两类广义多粒度上、下邻域近似算子并讨论其性质;其次,讨论了两种广义多粒度邻域粗糙集的关系;最后,通过传染病案例实证分析了模型的实用性和有效性. 展开更多
关键词 广义多粒度粗糙集 双量化 邻域粗糙集 传染病
下载PDF
区间值直觉模糊β覆盖粗糙集模型 被引量:1
19
作者 任浩伟 王青海 张巧珍 《陕西科技大学学报》 北大核心 2024年第5期214-224,共11页
在新的β覆盖邻域系统上提出四种区间值直觉模糊β覆盖粗糙集模型,用于有效处理区间值直觉模糊信息的多属性决策问题.首先,从论域的区间值直觉模糊β覆盖出发,引入两类新的邻域系统并构造了四种不同类型的区间值直觉模糊β覆盖粗糙集,... 在新的β覆盖邻域系统上提出四种区间值直觉模糊β覆盖粗糙集模型,用于有效处理区间值直觉模糊信息的多属性决策问题.首先,从论域的区间值直觉模糊β覆盖出发,引入两类新的邻域系统并构造了四种不同类型的区间值直觉模糊β覆盖粗糙集,扩展了现有模型的适用范围.其次,深入研究了每种模型的数学性质,构建了所提出的四种模型之间的关联关系,为模糊β覆盖粗糙集领域的研究提供了理论基础.最后,为解决区间值直觉模糊信息的多属性决策问题,设计了决策算法并进行应用实例分析,并通过与其他决策方法的对比分析,表明了区间值直觉模糊β覆盖粗糙集在多属性决策问题中具有可行性和有效性.研究成果对于复杂模糊信息决策具有一定的参考和指导意义,并为解决多属性决策问题提供了新的思路和方法. 展开更多
关键词 区间值直觉模糊集 邻域系统 β覆盖粗糙集 多属性决策
下载PDF
基于自适应密度邻域关系的多标签在线流特征选择
20
作者 张海翔 李培培 胡学钢 《计算机技术与发展》 2024年第1期23-29,共7页
流特征选择指从以流形式到来的特征数据中选出最优特征子集,现有方法大多在模型训练中需要事先学习领域信息并预设给定参数值。实际应用中,由于不同的数据集数据结构和来源不同,在模型学习过程中研究人员无法提前获取相关领域知识且针... 流特征选择指从以流形式到来的特征数据中选出最优特征子集,现有方法大多在模型训练中需要事先学习领域信息并预设给定参数值。实际应用中,由于不同的数据集数据结构和来源不同,在模型学习过程中研究人员无法提前获取相关领域知识且针对不同类型数据集指定一个统一参数存在巨大挑战。基于此,提出一种基于自适应密度邻域关系的多标签在线流特征选择方法(multi-label online stream feature selection based on adaptive density neighborhood relation,ML-OFS-ADNR),基于邻域粗糙集理论,所提方法在特征依赖计算时无需任何先验领域信息。此外,提出了一种新的自适应密度邻域关系,使用周围实例的密度信息,可以在流特征选择过程中自动选择适当数量的邻域,不需要事先指定任何参数。通过模糊等价约束,ML-OFS-ADNR可以选择高依赖低冗余度的特征。实验表明在10种不同类型的数据集上,所提方法在特征数量相同的情况下优于传统特征选择方法和先进的在线流特征选择方法。 展开更多
关键词 多标签分类 流特征 邻域粗糙集 自适应密度邻域 在线流特征选择
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部