This paper generalizes the classic resource allocation problem to the resource planning and allocation problem, in which the resource itself is a decision variable and the cost of each activity is uncertain when the r...This paper generalizes the classic resource allocation problem to the resource planning and allocation problem, in which the resource itself is a decision variable and the cost of each activity is uncertain when the resource is determined. The authors formulate this problem as a two-stage stochastic programming. The authors first propose an efficient algorithm for the case with finite states. Then, a sudgradient method is proposed for the general case and it is shown that the simple algorithm for the unique state case can be used to compute the subgradient of the objective function. Numerical experiments are conducted to show the effectiveness of the model.展开更多
A stochastic resource allocation model, based on the principles of Markov decision processes(MDPs), is proposed in this paper. In particular, a general-purpose framework is developed, which takes into account resource...A stochastic resource allocation model, based on the principles of Markov decision processes(MDPs), is proposed in this paper. In particular, a general-purpose framework is developed, which takes into account resource requests for both instant and future needs. The considered framework can handle two types of reservations(i.e., specified and unspecified time interval reservation requests), and implement an overbooking business strategy to further increase business revenues. The resulting dynamic pricing problems can be regarded as sequential decision-making problems under uncertainty, which is solved by means of stochastic dynamic programming(DP) based algorithms. In this regard, Bellman’s backward principle of optimality is exploited in order to provide all the implementation mechanisms for the proposed reservation pricing algorithm. The curse of dimensionality, as the inevitable issue of the DP both for instant resource requests and future resource reservations,occurs. In particular, an approximate dynamic programming(ADP) technique based on linear function approximations is applied to solve such scalability issues. Several examples are provided to show the effectiveness of the proposed approach.展开更多
In a cooperative transferable utilities game, the allocation of the win of the grand coalition is an Egalitarian Allocation, if this win is divided into equal parts among all players. The Inverse Set relative to the S...In a cooperative transferable utilities game, the allocation of the win of the grand coalition is an Egalitarian Allocation, if this win is divided into equal parts among all players. The Inverse Set relative to the Shapley Value of a game is a set of games in which the Shapley Value is the same as the initial one. In the Inverse Set, we determined a family of games for which the Shapley Value is also a coalitional rational value. The Egalitarian Allocation of the game is efficient, so that in the set called the Inverse Set relative to the Shapley Value, the allocation is the same as the initial one, but may not be coalitional rational. In this paper, we shall find out in the same family of the Inverse Set, a subfamily of games with the Egalitarian Allocation is also a coalitional rational value. We show some relationship between the two sets of games, where our values are coalitional rational. Finally, we shall discuss the possibility that our procedure may be used for solving a very similar problem for other efficient values. Numerical examples show the procedure to get solutions for the efficient values.展开更多
In this study we discuss the use of the simplex method to solve allocation problems whose flow matrices are doubly stochastic. Although these problems can be solved via a 0 - 1 integer programming method, H. W. Kuhn [...In this study we discuss the use of the simplex method to solve allocation problems whose flow matrices are doubly stochastic. Although these problems can be solved via a 0 - 1 integer programming method, H. W. Kuhn [1] suggested the use of linear programming in addition to the Hungarian method. Specifically, we use the existence theorem of the solution along with partially total unimodularity and nonnegativeness of the incidence matrix to prove that the simplex method facilitates solving these problems. We also provide insights as to how a partition including a particular unit may be obtained.展开更多
In the smart warehousing system adopting cargo-to-person mode, all the items are stored in the movable shelves. There are some warehouse robots transporting the shelves to the working platforms for completing order pi...In the smart warehousing system adopting cargo-to-person mode, all the items are stored in the movable shelves. There are some warehouse robots transporting the shelves to the working platforms for completing order picking or items replenishment tasks. When the number of robots is insufficient, the task allocation problem of robots is an important issue in designing the warehousing system. In this paper, the task allocation problem of insufficient warehouse robots (TAPIR) is investigated. Firstly, the TAPIR problem is decomposed into three sub-problems: task grouping problem, task scheduling problem and task balanced allocation problem. Then three sub-problems are respectively formulated into integer programming models, and the corresponding heuristic algorithms for solving three sub-problems are designed. Finally, the simulation and analysis are done on the real data of online bookstore. Simulation results show that the mathematical models and algorithms of this paper can provide a theoretical basis for solving the TAPIR problem.展开更多
The development of the assistive abilities regarding the decision-making process o fan Intelligent Control System (ICS) like a fuzzy expert system implies the development of its functionality and its ability of spec...The development of the assistive abilities regarding the decision-making process o fan Intelligent Control System (ICS) like a fuzzy expert system implies the development of its functionality and its ability of specification. Fuzzy expert systems can model fuzzy controllers, i.e., the knowledge representation and the abilities of making decisions corresponding to fuzzy expert systems are much more complicated that in the case of standard fuzzy controllers. The expert system acts also as a supervisor, creating meta-level reasoning on a set of fuzzy controllers, in order to choose the best one for the management of the process. Knowledge Management Systems (KMSs) is a new development paradigm of Intelligent Systems which has resulted from a synergy between fuzzy sets, artificial neural networks, evolutionary computation, machine learning, etc., broadening computer science, physics, economics, engineering, mathematics. This paper presents, after a synergic new paradigm of intelligent systems, as a practical case study the fuzzy and temporal properties of knowledge formalism embedded in an ICS. We are not dealing high with level reasoning methods, because we think that real-time problems can only be solved by rather low-level reasoning. Solving the match-time predictability problem would allow us to build much more powerful reasoning techniques.展开更多
We consider a capacitated location-allocation problem in the presence of k connections on the horizontal line barrier. The objective is to locate a set of new facilities among a set of existing facilities and to alloc...We consider a capacitated location-allocation problem in the presence of k connections on the horizontal line barrier. The objective is to locate a set of new facilities among a set of existing facilities and to allocate an optimal number of existing facilities to each new facility in order to satisfy their demands such that the summation of the weighted rectilinear barrier distances from new facilities to existing facilities is minimized. The proposed problem is designed as a mixed-integer nonlinear programming model. To show the efficiency of the model, a numerical example is provided. It is worth noting that the global optimal solution is obtained.展开更多
The resource allocation for device-to-device(D2D)multicast communications is investigated.To achieve fair energy efficiency(EE)among different multicast groups,the max-min fairness criterion is used as the optimizatio...The resource allocation for device-to-device(D2D)multicast communications is investigated.To achieve fair energy efficiency(EE)among different multicast groups,the max-min fairness criterion is used as the optimization criterion and the EE of D2D multicast groups are taken as the optimization objective function.The aim is to maximize the minimum EE for different D2D multicast groups under the constraints of the maximum transmit power and minimum transmit rate,which is modeled as a non-convex and mixed-integer fractional programming problem.Here,suboptimal resource allocation algorithms are proposed to solve this problem.First,channel assignment scheme is performed to assign channel to D2D multicast groups.Second,for a given channel assignment,iterative power allocation schemes with and without loss of cellular users’rate are completed,respectively.Simulation results corroborate the convergence performance of the proposed algorithms.In addition,compared with the traditional throughput maximization algorithm,the proposed algorithms can improve the energy efficiency of the system and the fairness achieved among different multicast groups.展开更多
Promotion is an essential element in the marketing mix. It is used by businesses to inform, influence and persuade customers to adopt the products and services they offer. Without promotion, business would be stagnant...Promotion is an essential element in the marketing mix. It is used by businesses to inform, influence and persuade customers to adopt the products and services they offer. Without promotion, business would be stagnant and lack substantial growth because the brands would have low visibility in the market. Moreover, today’s vast and assorted markets comprise of customers with different needs and varied behavior. So it is rarely possible for companies to satisfy all customers by treating them alike. Thus there arises a need to divide the market into segments having customers with similar traits/characteristics. After identifying appropriate market segments, firms can design differentiated promotional campaigns for each segment. At the same time there can be a mass market promotional campaign that reaches different segments with a fixed spectrum. Also since promotional effort resources are limited, one must use them judiciously. In this paper, we formulate mathematical programming problem under repeat purchase scenario, which optimally allocates mass promotional effort resources and differentiated promotional effort resources across the segments dynamically in order to maximize the overall sales obtained from multiple products of a product line under budgetary and minimum sales aspiration level constraint on each product under consideration in each segment. The planning horizon is divided into multi periods, the adoption pattern of each product in each segment is observed in every subinterval and accordingly promotional effort allocations are determined for the next period till we reach the end of planning period. The optimization model has been further extended to incorporate minimum aspiration level constraints on total sales for each product under consideration from all the segments taken together. The non linear programming problem so formulated is solved using differential evolution approach. A numerical example has been discussed to illustrate applicability of the model.展开更多
Some novel applications and pragmatic variations of knapsack problem (KP) are presented and constructed, which are formulated and developed from a model initiated in this paper on profit allocation from partition of...Some novel applications and pragmatic variations of knapsack problem (KP) are presented and constructed, which are formulated and developed from a model initiated in this paper on profit allocation from partition of jobs in terms of two-person discrete cooperation game.展开更多
Spectrum management and resource allocation(RA)problems are challenging and critical in a vast number of research areas such as wireless communications and computer networks.The traditional approaches for solving such...Spectrum management and resource allocation(RA)problems are challenging and critical in a vast number of research areas such as wireless communications and computer networks.The traditional approaches for solving such problems usually consume time and memory,especially for large-size problems.Recently different machine learning approaches have been considered as potential promising techniques for combinatorial optimization problems,especially the generative model of the deep neural networks.In this work,we propose a resource allocation deep autoencoder network,as one of the promising generative models,for enabling spectrum sharing in underlay device-to-device(D2D)communication by solving linear sum assignment problems(LSAPs).Specifically,we investigate the performance of three different architectures for the conditional variational autoencoders(CVAE).The three proposed architecture are the convolutional neural network(CVAECNN)autoencoder,the feed-forward neural network(CVAE-FNN)autoencoder,and the hybrid(H-CVAE)autoencoder.The simulation results show that the proposed approach could be used as a replacement of the conventional RA techniques,such as the Hungarian algorithm,due to its ability to find solutions of LASPs of different sizes with high accuracy and very fast execution time.Moreover,the simulation results reveal that the accuracy of the proposed hybrid autoencoder architecture outperforms the other proposed architectures and the state-of-the-art DNN techniques.展开更多
The process of making decisions is something humans do inherently and routinely,to the extent that it appears commonplace. However,in order to achieve good overall performance,decisions must take into account both the...The process of making decisions is something humans do inherently and routinely,to the extent that it appears commonplace. However,in order to achieve good overall performance,decisions must take into account both the outcomes of past decisions and opportunities of future ones. Reinforcement learning,which is fundamental to sequential decision-making,consists of the following components: 1 A set of decisions epochs; 2 A set of environment states; 3 A set of available actions to transition states; 4 State-action dependent immediate rewards for each action.At each decision,the environment state provides the decision maker with a set of available actions from which to choose. As a result of selecting a particular action in the state,the environment generates an immediate reward for the decision maker and shifts to a different state and decision. The ultimate goal for the decision maker is to maximize the total reward after a sequence of time steps.This paper will focus on an archetypal example of reinforcement learning,the stochastic multi-armed bandit problem. After introducing the dilemma,I will briefly cover the most common methods used to solve it,namely the UCB and εn- greedy algorithms. I will also introduce my own greedy implementation,the strict-greedy algorithm,which more tightly follows the greedy pattern in algorithm design,and show that it runs comparably to the two accepted algorithms.展开更多
基金supported by in part by the National Natural Science Foundation of China under Grant Nos.71390334 and 71132008the MOE Project of Key Research Institute of Humanities and Social Sciences at Universities under Grant No.11JJD630004Program for New Century Excellent Talents in University under Grant No.NCET-13-0660
文摘This paper generalizes the classic resource allocation problem to the resource planning and allocation problem, in which the resource itself is a decision variable and the cost of each activity is uncertain when the resource is determined. The authors formulate this problem as a two-stage stochastic programming. The authors first propose an efficient algorithm for the case with finite states. Then, a sudgradient method is proposed for the general case and it is shown that the simple algorithm for the unique state case can be used to compute the subgradient of the objective function. Numerical experiments are conducted to show the effectiveness of the model.
文摘A stochastic resource allocation model, based on the principles of Markov decision processes(MDPs), is proposed in this paper. In particular, a general-purpose framework is developed, which takes into account resource requests for both instant and future needs. The considered framework can handle two types of reservations(i.e., specified and unspecified time interval reservation requests), and implement an overbooking business strategy to further increase business revenues. The resulting dynamic pricing problems can be regarded as sequential decision-making problems under uncertainty, which is solved by means of stochastic dynamic programming(DP) based algorithms. In this regard, Bellman’s backward principle of optimality is exploited in order to provide all the implementation mechanisms for the proposed reservation pricing algorithm. The curse of dimensionality, as the inevitable issue of the DP both for instant resource requests and future resource reservations,occurs. In particular, an approximate dynamic programming(ADP) technique based on linear function approximations is applied to solve such scalability issues. Several examples are provided to show the effectiveness of the proposed approach.
文摘In a cooperative transferable utilities game, the allocation of the win of the grand coalition is an Egalitarian Allocation, if this win is divided into equal parts among all players. The Inverse Set relative to the Shapley Value of a game is a set of games in which the Shapley Value is the same as the initial one. In the Inverse Set, we determined a family of games for which the Shapley Value is also a coalitional rational value. The Egalitarian Allocation of the game is efficient, so that in the set called the Inverse Set relative to the Shapley Value, the allocation is the same as the initial one, but may not be coalitional rational. In this paper, we shall find out in the same family of the Inverse Set, a subfamily of games with the Egalitarian Allocation is also a coalitional rational value. We show some relationship between the two sets of games, where our values are coalitional rational. Finally, we shall discuss the possibility that our procedure may be used for solving a very similar problem for other efficient values. Numerical examples show the procedure to get solutions for the efficient values.
文摘In this study we discuss the use of the simplex method to solve allocation problems whose flow matrices are doubly stochastic. Although these problems can be solved via a 0 - 1 integer programming method, H. W. Kuhn [1] suggested the use of linear programming in addition to the Hungarian method. Specifically, we use the existence theorem of the solution along with partially total unimodularity and nonnegativeness of the incidence matrix to prove that the simplex method facilitates solving these problems. We also provide insights as to how a partition including a particular unit may be obtained.
文摘In the smart warehousing system adopting cargo-to-person mode, all the items are stored in the movable shelves. There are some warehouse robots transporting the shelves to the working platforms for completing order picking or items replenishment tasks. When the number of robots is insufficient, the task allocation problem of robots is an important issue in designing the warehousing system. In this paper, the task allocation problem of insufficient warehouse robots (TAPIR) is investigated. Firstly, the TAPIR problem is decomposed into three sub-problems: task grouping problem, task scheduling problem and task balanced allocation problem. Then three sub-problems are respectively formulated into integer programming models, and the corresponding heuristic algorithms for solving three sub-problems are designed. Finally, the simulation and analysis are done on the real data of online bookstore. Simulation results show that the mathematical models and algorithms of this paper can provide a theoretical basis for solving the TAPIR problem.
文摘The development of the assistive abilities regarding the decision-making process o fan Intelligent Control System (ICS) like a fuzzy expert system implies the development of its functionality and its ability of specification. Fuzzy expert systems can model fuzzy controllers, i.e., the knowledge representation and the abilities of making decisions corresponding to fuzzy expert systems are much more complicated that in the case of standard fuzzy controllers. The expert system acts also as a supervisor, creating meta-level reasoning on a set of fuzzy controllers, in order to choose the best one for the management of the process. Knowledge Management Systems (KMSs) is a new development paradigm of Intelligent Systems which has resulted from a synergy between fuzzy sets, artificial neural networks, evolutionary computation, machine learning, etc., broadening computer science, physics, economics, engineering, mathematics. This paper presents, after a synergic new paradigm of intelligent systems, as a practical case study the fuzzy and temporal properties of knowledge formalism embedded in an ICS. We are not dealing high with level reasoning methods, because we think that real-time problems can only be solved by rather low-level reasoning. Solving the match-time predictability problem would allow us to build much more powerful reasoning techniques.
文摘We consider a capacitated location-allocation problem in the presence of k connections on the horizontal line barrier. The objective is to locate a set of new facilities among a set of existing facilities and to allocate an optimal number of existing facilities to each new facility in order to satisfy their demands such that the summation of the weighted rectilinear barrier distances from new facilities to existing facilities is minimized. The proposed problem is designed as a mixed-integer nonlinear programming model. To show the efficiency of the model, a numerical example is provided. It is worth noting that the global optimal solution is obtained.
基金Projects(61801237,61701255)supported by the National Natural Science Foundation of ChinaProject(SBH17024)supported by the Postdoctoral Science Foundation of Jiangsu Province,China+2 种基金Project(15KJB510026)supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions,ChinaProject(BK20150866)supported by the Natural Science Foundation of Jiangsu Province,ChinaProjects(NY215046,NY217056)supported by the Introduction of Talent Fund of Nanjing University of Posts and Telecommunications,China
文摘The resource allocation for device-to-device(D2D)multicast communications is investigated.To achieve fair energy efficiency(EE)among different multicast groups,the max-min fairness criterion is used as the optimization criterion and the EE of D2D multicast groups are taken as the optimization objective function.The aim is to maximize the minimum EE for different D2D multicast groups under the constraints of the maximum transmit power and minimum transmit rate,which is modeled as a non-convex and mixed-integer fractional programming problem.Here,suboptimal resource allocation algorithms are proposed to solve this problem.First,channel assignment scheme is performed to assign channel to D2D multicast groups.Second,for a given channel assignment,iterative power allocation schemes with and without loss of cellular users’rate are completed,respectively.Simulation results corroborate the convergence performance of the proposed algorithms.In addition,compared with the traditional throughput maximization algorithm,the proposed algorithms can improve the energy efficiency of the system and the fairness achieved among different multicast groups.
文摘Promotion is an essential element in the marketing mix. It is used by businesses to inform, influence and persuade customers to adopt the products and services they offer. Without promotion, business would be stagnant and lack substantial growth because the brands would have low visibility in the market. Moreover, today’s vast and assorted markets comprise of customers with different needs and varied behavior. So it is rarely possible for companies to satisfy all customers by treating them alike. Thus there arises a need to divide the market into segments having customers with similar traits/characteristics. After identifying appropriate market segments, firms can design differentiated promotional campaigns for each segment. At the same time there can be a mass market promotional campaign that reaches different segments with a fixed spectrum. Also since promotional effort resources are limited, one must use them judiciously. In this paper, we formulate mathematical programming problem under repeat purchase scenario, which optimally allocates mass promotional effort resources and differentiated promotional effort resources across the segments dynamically in order to maximize the overall sales obtained from multiple products of a product line under budgetary and minimum sales aspiration level constraint on each product under consideration in each segment. The planning horizon is divided into multi periods, the adoption pattern of each product in each segment is observed in every subinterval and accordingly promotional effort allocations are determined for the next period till we reach the end of planning period. The optimization model has been further extended to incorporate minimum aspiration level constraints on total sales for each product under consideration from all the segments taken together. The non linear programming problem so formulated is solved using differential evolution approach. A numerical example has been discussed to illustrate applicability of the model.
基金Supported by the Research Fund of Shenzhen University(200552).
文摘Some novel applications and pragmatic variations of knapsack problem (KP) are presented and constructed, which are formulated and developed from a model initiated in this paper on profit allocation from partition of jobs in terms of two-person discrete cooperation game.
基金supported in part by the China NSFC Grant 61872248Guangdong NSF 2017A030312008+1 种基金Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No.161064)GDUPS (2015)
文摘Spectrum management and resource allocation(RA)problems are challenging and critical in a vast number of research areas such as wireless communications and computer networks.The traditional approaches for solving such problems usually consume time and memory,especially for large-size problems.Recently different machine learning approaches have been considered as potential promising techniques for combinatorial optimization problems,especially the generative model of the deep neural networks.In this work,we propose a resource allocation deep autoencoder network,as one of the promising generative models,for enabling spectrum sharing in underlay device-to-device(D2D)communication by solving linear sum assignment problems(LSAPs).Specifically,we investigate the performance of three different architectures for the conditional variational autoencoders(CVAE).The three proposed architecture are the convolutional neural network(CVAECNN)autoencoder,the feed-forward neural network(CVAE-FNN)autoencoder,and the hybrid(H-CVAE)autoencoder.The simulation results show that the proposed approach could be used as a replacement of the conventional RA techniques,such as the Hungarian algorithm,due to its ability to find solutions of LASPs of different sizes with high accuracy and very fast execution time.Moreover,the simulation results reveal that the accuracy of the proposed hybrid autoencoder architecture outperforms the other proposed architectures and the state-of-the-art DNN techniques.
文摘The process of making decisions is something humans do inherently and routinely,to the extent that it appears commonplace. However,in order to achieve good overall performance,decisions must take into account both the outcomes of past decisions and opportunities of future ones. Reinforcement learning,which is fundamental to sequential decision-making,consists of the following components: 1 A set of decisions epochs; 2 A set of environment states; 3 A set of available actions to transition states; 4 State-action dependent immediate rewards for each action.At each decision,the environment state provides the decision maker with a set of available actions from which to choose. As a result of selecting a particular action in the state,the environment generates an immediate reward for the decision maker and shifts to a different state and decision. The ultimate goal for the decision maker is to maximize the total reward after a sequence of time steps.This paper will focus on an archetypal example of reinforcement learning,the stochastic multi-armed bandit problem. After introducing the dilemma,I will briefly cover the most common methods used to solve it,namely the UCB and εn- greedy algorithms. I will also introduce my own greedy implementation,the strict-greedy algorithm,which more tightly follows the greedy pattern in algorithm design,and show that it runs comparably to the two accepted algorithms.