期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Seasonal Short-Term Load Forecasting for Power Systems Based onModal Decomposition and Feature-FusionMulti-Algorithm Hybrid Neural NetworkModel
1
作者 Jiachang Liu Zhengwei Huang +2 位作者 Junfeng Xiang Lu Liu Manlin Hu 《Energy Engineering》 EI 2024年第11期3461-3486,共26页
To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance,this paper proposes a seasonal short-termload combination predi... To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance,this paper proposes a seasonal short-termload combination prediction model based on modal decomposition and a feature-fusion multi-algorithm hybrid neural network model.Specifically,the characteristics of load components are analyzed for different seasons,and the corresponding models are established.First,the improved complete ensemble empirical modal decomposition with adaptive noise(ICEEMDAN)method is employed to decompose the system load for all four seasons,and the new sequence is obtained through reconstruction based on the refined composite multiscale fuzzy entropy of each decomposition component.Second,the correlation between different decomposition components and different features is measured through the max-relevance and min-redundancy method to filter out the subset of features with strong correlation and low redundancy.Finally,different components of the load in different seasons are predicted separately using a bidirectional long-short-term memory network model based on a Bayesian optimization algorithm,with a prediction resolution of 15 min,and the predicted values are accumulated to obtain the final results.According to the experimental findings,the proposed method can successfully balance prediction accuracy and prediction time while offering a higher level of prediction accuracy than the current prediction methods.The results demonstrate that the proposedmethod can effectively address the load power variation induced by seasonal differences in different regions. 展开更多
关键词 Short-term load forecasting seasonal characteristics refined composite multiscale fuzzy entropy(RCMFE) max-relevance and min-redundancy(mRMR) bidirectional long short-term memory(BiLSTM) hyperparameter search
下载PDF
Wind Power Prediction Based on Variational Mode Decomposition and Feature Selection 被引量:1
2
作者 Gang Zhang Benben Xu +2 位作者 Hongchi Liu Jinwang Hou Jiangbin Zhang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第6期1520-1529,共10页
Accurate wind power prediction can scientifically arrange wind power output and timely adjust power system dispatching plans. Wind power is associated with its uncertainty,multi-frequency and nonlinearity for it is su... Accurate wind power prediction can scientifically arrange wind power output and timely adjust power system dispatching plans. Wind power is associated with its uncertainty,multi-frequency and nonlinearity for it is susceptible to climatic factors such as temperature, air pressure and wind speed.Therefore, this paper proposes a wind power prediction model combining multi-frequency combination and feature selection.Firstly, the variational mode decomposition(VMD) is used to decompose the wind power data, and the sub-components with different fluctuation characteristics are obtained and divided into high-, intermediate-, and low-frequency components according to their fluctuation characteristics. Then, a feature set including historical data of wind power and meteorological factors is established, which chooses the feature sets of each component by using the max-relevance and min-redundancy(m RMR) feature selection method based on mutual information selected from the above set. Each component and its corresponding feature set are used as an input set for prediction afterwards. Thereafter, the high-frequency input set is predicted using back propagation neural network(BPNN), and the intermediate-and low-frequency input sets are predicted using least squares support vector machine(LS-SVM). After obtaining the prediction results of each component, BPNN is used for integration to obtain the final predicted value of wind power, and the ramping rate is verified. Finally, through the comparison, it is found that the proposed model has higher prediction accuracy. 展开更多
关键词 Wind power prediction feature selection variational mode decomposition(VMD) max-relevance and min-redundancy(mRMR)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部