G. C. Ying, Y. Y. Meng, B. E. Sagan, and V. R. Vatter [1] found the maximum number of maximal independent sets in connected graphs which contain at most two cycles. In this paper, we give an alternative proof to deter...G. C. Ying, Y. Y. Meng, B. E. Sagan, and V. R. Vatter [1] found the maximum number of maximal independent sets in connected graphs which contain at most two cycles. In this paper, we give an alternative proof to determine the largest number of maximal independent sets among all connected graphs of order n ≥ 12, which contain at most two cycles. We also characterize the extremal graph achieving this maximum value.展开更多
The aim of this paper is to given an algebraic computational method for finding maximal independent sets as well as the independent number of an arbitrary finite graph of n vertices G by strengthening the problem of f...The aim of this paper is to given an algebraic computational method for finding maximal independent sets as well as the independent number of an arbitrary finite graph of n vertices G by strengthening the problem of finding maximal independent sets of G to the problem of finding k-independent sets in G for. It is shown that the existence of k-independent sets in G is equivalent to the existence of solutions of a system of multivariate polynomial equations. It follows that the problem of finding k-independent sets can be realized by using Gröbner bases of polynomial ideals. Since the number of k-independent sets is finite, the triangular equations composed by Gröbner bases are easier to be solved. Consequently, the maximal independent sets and the independent number of G are obtained after solving at most n such equations. Finally, the numerical example is presented to illustrate the effectiveness of this algebraic computational method.展开更多
To cope with the constraint problem of power consumption and transmission delay in the virtual backbone of wireless sensor network, a distributed connected dominating set (CDS) algorithm with (α,β)-constraints i...To cope with the constraint problem of power consumption and transmission delay in the virtual backbone of wireless sensor network, a distributed connected dominating set (CDS) algorithm with (α,β)-constraints is proposed. Based on the (α, β)-tree concept, a new connected dominating tree with bounded transmission delay problem(CDTT) is defined and a corresponding algorithm is designed to construct a CDT-tree which can trade off limited total power and bounded transmission delay from source to destination nodes. The CDT algorithm consists of two phases: The first phase constructs a maximum independent set(MIS)in a unit disk graph model. The second phase estimates the distance and calculates the transmission power to construct a spanning tree in an undirected graph with different weights for MST and SPF, respectively. The theoretical analysis and simulation results show that the CDT algorithm gives a correct solution to the CDTF problem and forms a virtual backbone with( α,β)-constraints balancing the requirements of power consumption and transmission delay.展开更多
This paper deals with the representation of the solutions of a polynomial system, and concentrates on the high-dimensional case. Based on the rational univari- ate representation of zero-dimensional polynomial systems...This paper deals with the representation of the solutions of a polynomial system, and concentrates on the high-dimensional case. Based on the rational univari- ate representation of zero-dimensional polynomial systems, we give a new description called rational representation for the solutions of a high-dimensional polynomial sys- tem and propose an algorithm for computing it. By this way all the solutions of any high-dimensional polynomial system can be represented by a set of so-called rational- representation sets.展开更多
This paper proposes a multi-axis projection (MAP) based giant component formation strategy via the Maximal Independent Set (MIS) in a random unit-disk graph. We focus on the problem of virtual backbone constructio...This paper proposes a multi-axis projection (MAP) based giant component formation strategy via the Maximal Independent Set (MIS) in a random unit-disk graph. We focus on the problem of virtual backbone construction in wireless ad hoc and sensor networks, where the coverage areas of the nodes are disks with identical radii. In the simulation, we show that the MAP-based giant component has the ability to connect most nodes and serves as a backbone in the network. The algorithm is localized and may play an important role in efficiently constructing a virtual backbone for ad hoc and sensor networks.展开更多
文摘G. C. Ying, Y. Y. Meng, B. E. Sagan, and V. R. Vatter [1] found the maximum number of maximal independent sets in connected graphs which contain at most two cycles. In this paper, we give an alternative proof to determine the largest number of maximal independent sets among all connected graphs of order n ≥ 12, which contain at most two cycles. We also characterize the extremal graph achieving this maximum value.
文摘The aim of this paper is to given an algebraic computational method for finding maximal independent sets as well as the independent number of an arbitrary finite graph of n vertices G by strengthening the problem of finding maximal independent sets of G to the problem of finding k-independent sets in G for. It is shown that the existence of k-independent sets in G is equivalent to the existence of solutions of a system of multivariate polynomial equations. It follows that the problem of finding k-independent sets can be realized by using Gröbner bases of polynomial ideals. Since the number of k-independent sets is finite, the triangular equations composed by Gröbner bases are easier to be solved. Consequently, the maximal independent sets and the independent number of G are obtained after solving at most n such equations. Finally, the numerical example is presented to illustrate the effectiveness of this algebraic computational method.
基金Major Program of the National Natural Science Foundation of China (No.70533050)High Technology Research Program ofJiangsu Province(No.BG2007012)+1 种基金China Postdoctoral Science Foundation(No.20070411065)Science Foundation of China University of Mining andTechnology(No.OC080303)
文摘To cope with the constraint problem of power consumption and transmission delay in the virtual backbone of wireless sensor network, a distributed connected dominating set (CDS) algorithm with (α,β)-constraints is proposed. Based on the (α, β)-tree concept, a new connected dominating tree with bounded transmission delay problem(CDTT) is defined and a corresponding algorithm is designed to construct a CDT-tree which can trade off limited total power and bounded transmission delay from source to destination nodes. The CDT algorithm consists of two phases: The first phase constructs a maximum independent set(MIS)in a unit disk graph model. The second phase estimates the distance and calculates the transmission power to construct a spanning tree in an undirected graph with different weights for MST and SPF, respectively. The theoretical analysis and simulation results show that the CDT algorithm gives a correct solution to the CDTF problem and forms a virtual backbone with( α,β)-constraints balancing the requirements of power consumption and transmission delay.
基金The National Grand Fundamental Research 973 Program (2004CB318000) of China
文摘This paper deals with the representation of the solutions of a polynomial system, and concentrates on the high-dimensional case. Based on the rational univari- ate representation of zero-dimensional polynomial systems, we give a new description called rational representation for the solutions of a high-dimensional polynomial sys- tem and propose an algorithm for computing it. By this way all the solutions of any high-dimensional polynomial system can be represented by a set of so-called rational- representation sets.
基金Supported by the National Natural Science Foundation of China(No. 60903055)the China Postdoctoral Science Foundation Funded Project (No. 20080430776)the National Basic Research and Development (973) Program of China (No. 2011CB302905)
文摘This paper proposes a multi-axis projection (MAP) based giant component formation strategy via the Maximal Independent Set (MIS) in a random unit-disk graph. We focus on the problem of virtual backbone construction in wireless ad hoc and sensor networks, where the coverage areas of the nodes are disks with identical radii. In the simulation, we show that the MAP-based giant component has the ability to connect most nodes and serves as a backbone in the network. The algorithm is localized and may play an important role in efficiently constructing a virtual backbone for ad hoc and sensor networks.