期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合深度学习的零件相似度匹配算法研究
1
作者 王上 赵罘 《机电工程》 CAS 北大核心 2024年第11期2041-2049,共9页
使用传统算法对机械零件和模型图进行特征匹配时很依赖检测到的关键点,零件图受旋转角度和阴影反光的影响较大,并存在大量纹理稀疏的区域。针对传统算法在该情况下仅能提取到少量特征点,从而造成识别率低的问题,提出了一种融合了深度学... 使用传统算法对机械零件和模型图进行特征匹配时很依赖检测到的关键点,零件图受旋转角度和阴影反光的影响较大,并存在大量纹理稀疏的区域。针对传统算法在该情况下仅能提取到少量特征点,从而造成识别率低的问题,提出了一种融合了深度学习的特征匹配方法。首先,采用超像素分割算法将零件图分为纹理丰富区域和纹理稀疏区域;然后,对纹理丰富区域采用SuperPoint和SuperGlue算法提取了局部特征,对纹理稀疏区域采用LoFTR算法进行了全局提取,获得了具有更强鲁棒性的特征,其中,采用几何卷积神经网络(GCNNs)对LoFTR提取的特征进行了编码,使特征更具有旋转和平移的不变性;最后,引入最大后验样本一致性(MAGSAC++)改进算法,对匹配结果进行了鲁棒估计和筛选,剔除了错误匹配,进一步提高了匹配的准确性。研究结果表明:与基于传统算法的尺度不变特征变换(SIFT)、加速稳健特征(SURF)和基于深度学习的D2Net匹配方法相比较,该算法的F值分别提升了14.9%、23.1%和8.3%,在匹配特征点数量和准确度方面效果更优,有效提升了在复杂场景下的匹配性能。 展开更多
关键词 特征匹配 几何卷积神经网络 最大后验样本一致性 尺度不变特征变换 加速稳健特征 零件识别
下载PDF
应用序贯相似检测的基本矩阵快速鲁棒估计 被引量:9
2
作者 唐永鹤 胡旭峰 卢焕章 《光学精密工程》 EI CAS CSCD 北大核心 2011年第11期2759-2766,共8页
提出了一种基于序贯相似检测(SSDA)的快速鲁棒基本矩阵估计算法来估计基本矩阵。在最大后验一致性(MAPSAC)算法中引入SSDA搜索最优模型参数,通过及时剔除错误模型减少计算成本函数的累加次数,不仅保持了MAPSAC的良好鲁棒性,而且有效减... 提出了一种基于序贯相似检测(SSDA)的快速鲁棒基本矩阵估计算法来估计基本矩阵。在最大后验一致性(MAPSAC)算法中引入SSDA搜索最优模型参数,通过及时剔除错误模型减少计算成本函数的累加次数,不仅保持了MAPSAC的良好鲁棒性,而且有效减少了算法的计算量。用M估计算法对改进的MAPSAC算法获得的初始内点集进行优化,剔除估计余差较大的内点,并用优化的内点集求解基本矩阵,进一步提高算法的估计精度和鲁棒性。实验结果表明,该算法不仅估计精度较高,鲁棒性较好,而且平均处理速度比MAPSAC算法提高了30%以上,基本满足三维重建、匹配和跟踪、相机自标定等应用领域对实时性、鲁棒性和精度的要求。 展开更多
关键词 序贯相似检测 基本矩阵估计 最大后验一致性 M估计算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部