期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Method for Evaluating the Maximum Bending Degree of Flexural Toppling Rock Masses Based on the Rock Tensile Strain-Softening Model
1
作者 Jiongchao Wang Jun Zheng +2 位作者 Jichao Guo Qing Lü Jianhui Deng 《Journal of Earth Science》 SCIE CAS CSCD 2024年第4期1243-1253,共11页
Flexural toppling occurs when a series of layered rock masses bend towards their free face.It is important to evaluate the maximum bending degree and the requirement of supports of flexural toppling rock mass to preve... Flexural toppling occurs when a series of layered rock masses bend towards their free face.It is important to evaluate the maximum bending degree and the requirement of supports of flexural toppling rock mass to prevent rock mass cracking and even failure leading to a landslide.Based on the rock tensile strain-softening model,this study proposes a method for calculating the maximum curvature(C_(ppmax))of flexural toppling rock masses.By applying this method to calculate Cppmax of 9 types of rock masses with different hardness and rock layer thickness,some conclusions are drawn:(1)the internal key factors affecting C_(ppmax)are E^(⋆)(E^(⋆)=E_(ss)/E_(0),where E_(0)and E_(ss)are the mean deformation moduli of the rock before and after reaching its peak tensile strength,respectively),the strainεt corresponding to the tensile strength of rock,and the thickness(h)of rock layers;(2)hard rock layers are more likely to develop into block toppling than soft rock layers;and(3)thin rock layers are more likely to remain in flexural toppling state than thick rock layers.In addition,it is found that C_(ppmax)for flexural toppling rock masses composed of bedded rocks such as gneiss is related to the tensile direction. 展开更多
关键词 flexural toppling rock mass maximum bending degree strain-softening model curvature rock mechanics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部