genetic algorithm is proposed for maximum independent set problems. A specially designed mutation operato is adopted to search the solution space more efficienily, where adjacen relation of a graph is inte-grated. The...genetic algorithm is proposed for maximum independent set problems. A specially designed mutation operato is adopted to search the solution space more efficienily, where adjacen relation of a graph is inte-grated. The DIMACS benchmark graphs are used to test our algorithm, and the results show that the algorithm outper-forms our previous version. Moreover two new low bounds are found for graphs in DIMACS.展开更多
Given an undirected graph,the Maximum Clique Problem(MCP)is to find a largest complete subgraph of the graph.MCP is NP-hard and has found many practical applications.In this paper,we propose a parallel Branch-and-Boun...Given an undirected graph,the Maximum Clique Problem(MCP)is to find a largest complete subgraph of the graph.MCP is NP-hard and has found many practical applications.In this paper,we propose a parallel Branch-and-Bound(BnB)algorithm to tackle this NP-hard problem,which carries out multiple bounded searches in parallel.Each search has its upper bound and shares a lower bound with the rest of the searches.The potential benefit of the proposed approach is that an active search terminates as soon as the best lower bound found so far reaches or exceeds its upper bound.We describe the implementation of our highly scalable and efficient parallel MCP algorithm,called PBS,which is based on a state-of-the-art sequential MCP algorithm.The proposed algorithm PBS is evaluated on hard DIMACS and BHOSLIB instances.The results show that PBS achieves a near-linear speedup on most DIMACS instances and a superlinear speedup on most BHOSLIB instances.Finally,we give a detailed analysis that explains the good speedups achieved for the tested instances.展开更多
提出了一种求解最大团问题的自适应过滤局部搜索算法AF-RLS(adaptive filtered-reactive local search).该算法通过构建独立集约束,优选出有希望的邻域移动方向来提高局部搜索趋向最优解的概率;并在比较分析两种不同逃逸策略的逃逸能力...提出了一种求解最大团问题的自适应过滤局部搜索算法AF-RLS(adaptive filtered-reactive local search).该算法通过构建独立集约束,优选出有希望的邻域移动方向来提高局部搜索趋向最优解的概率;并在比较分析两种不同逃逸策略的逃逸能力和逃逸代价的基础上,提出了基于问题解空间结构自适应设置局部搜索深度参数的方法.基于漂移分析理论和在37个典型测试算例上的实验结果表明,所提出的AF-RLS算法相比原RLS算法性能有明显改善.展开更多
文摘genetic algorithm is proposed for maximum independent set problems. A specially designed mutation operato is adopted to search the solution space more efficienily, where adjacen relation of a graph is inte-grated. The DIMACS benchmark graphs are used to test our algorithm, and the results show that the algorithm outper-forms our previous version. Moreover two new low bounds are found for graphs in DIMACS.
基金supported by the National Natural Science Foundation of China under Grant No.62162066the Open Funding of Engineering Research Center of Cyberspace of Ministry of Education of China under Grant No.WLKJAQ202011010+1 种基金the Education Department Funding of Yunnan Province of China under Grant No.2021J0006the Spanish AEI project PID2019-111544GB-C2.
文摘Given an undirected graph,the Maximum Clique Problem(MCP)is to find a largest complete subgraph of the graph.MCP is NP-hard and has found many practical applications.In this paper,we propose a parallel Branch-and-Bound(BnB)algorithm to tackle this NP-hard problem,which carries out multiple bounded searches in parallel.Each search has its upper bound and shares a lower bound with the rest of the searches.The potential benefit of the proposed approach is that an active search terminates as soon as the best lower bound found so far reaches or exceeds its upper bound.We describe the implementation of our highly scalable and efficient parallel MCP algorithm,called PBS,which is based on a state-of-the-art sequential MCP algorithm.The proposed algorithm PBS is evaluated on hard DIMACS and BHOSLIB instances.The results show that PBS achieves a near-linear speedup on most DIMACS instances and a superlinear speedup on most BHOSLIB instances.Finally,we give a detailed analysis that explains the good speedups achieved for the tested instances.
基金Supported by the National Research Foundation for the Doctoral Program of Ministry of Education of China(国家教育部博士点基金)the Natural Science Foundation of Jiangsu Province of China under GrantNo.BK2003030(江苏省自然科学基金)
文摘提出了一种求解最大团问题的自适应过滤局部搜索算法AF-RLS(adaptive filtered-reactive local search).该算法通过构建独立集约束,优选出有希望的邻域移动方向来提高局部搜索趋向最优解的概率;并在比较分析两种不同逃逸策略的逃逸能力和逃逸代价的基础上,提出了基于问题解空间结构自适应设置局部搜索深度参数的方法.基于漂移分析理论和在37个典型测试算例上的实验结果表明,所提出的AF-RLS算法相比原RLS算法性能有明显改善.