Through the systematic analysis of the ground settlement generated by the process of shield tunneling,the relationships between ground deformation and construction parameters are studied in this paper.Based on the ass...Through the systematic analysis of the ground settlement generated by the process of shield tunneling,the relationships between ground deformation and construction parameters are studied in this paper.Based on the assumption of linear small deformation,a mathematical model of the relationship between ground deformation and construction parameters is set up.The principle and method of optimization for estimating ground deformation is studied.The actual measured data are compared with the results of theoretical analysis in a case.Considering different ground formations in different construction sites with different adverse effects on surface and underground structures,the ground surface deformations caused by shield tunneling is an aimed topic in this paper.The contributions and research implications are the revealed relationships between the ground deformation and the shield tunneling parameters during construction.展开更多
A model of non-uniform height rectangular fin, in which the variation of base's thickness and width are taken into account, is established in this paper. The dimensionless maximum thermal resistance(DMTR) and the ...A model of non-uniform height rectangular fin, in which the variation of base's thickness and width are taken into account, is established in this paper. The dimensionless maximum thermal resistance(DMTR) and the dimensionless equivalent thermal resistance(DETR) defined based on the entransy dissipation rate(EDR) are taken as performance evaluation indexes. According to constructal theory, the variations of the two indexes with the geometric parameters of the fin are analyzed by using a finite-volume computational fluid dynamics code, the effects of the fin-material fraction on the two indexes are analyzed. It is found that the two indexes decrease monotonically as the ratio between the front height and the back height of the fin increases subjected to the non-uniform height rectangular fin. When the model is reduced to the uniform height fin, the two indexes increase first and then decrease with increase in the ratio between the height of the fin and the fin space. The fin-material fraction has no effect on the change rule of the two indexes with the ratio between the height of the fin and the fin space. The sensitivity of the DETR to the geometric parameters of the fin is higher than that of the DMTR to the geometric parameters. The results obtained herein can provide some theoretical support for the thermal design of rectangular fins.展开更多
文摘Through the systematic analysis of the ground settlement generated by the process of shield tunneling,the relationships between ground deformation and construction parameters are studied in this paper.Based on the assumption of linear small deformation,a mathematical model of the relationship between ground deformation and construction parameters is set up.The principle and method of optimization for estimating ground deformation is studied.The actual measured data are compared with the results of theoretical analysis in a case.Considering different ground formations in different construction sites with different adverse effects on surface and underground structures,the ground surface deformations caused by shield tunneling is an aimed topic in this paper.The contributions and research implications are the revealed relationships between the ground deformation and the shield tunneling parameters during construction.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51579244, 51506220 and 51356001)
文摘A model of non-uniform height rectangular fin, in which the variation of base's thickness and width are taken into account, is established in this paper. The dimensionless maximum thermal resistance(DMTR) and the dimensionless equivalent thermal resistance(DETR) defined based on the entransy dissipation rate(EDR) are taken as performance evaluation indexes. According to constructal theory, the variations of the two indexes with the geometric parameters of the fin are analyzed by using a finite-volume computational fluid dynamics code, the effects of the fin-material fraction on the two indexes are analyzed. It is found that the two indexes decrease monotonically as the ratio between the front height and the back height of the fin increases subjected to the non-uniform height rectangular fin. When the model is reduced to the uniform height fin, the two indexes increase first and then decrease with increase in the ratio between the height of the fin and the fin space. The fin-material fraction has no effect on the change rule of the two indexes with the ratio between the height of the fin and the fin space. The sensitivity of the DETR to the geometric parameters of the fin is higher than that of the DMTR to the geometric parameters. The results obtained herein can provide some theoretical support for the thermal design of rectangular fins.