Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering.The latter is particularly true for slope stability assessment,where the effects of uncertainty ...Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering.The latter is particularly true for slope stability assessment,where the effects of uncertainty are synthesized in the so-called probability of failure.This probability quantifies the reliability of a slope and its numerical calculation is usually quite involved from a numerical viewpoint.In view of this issue,this paper proposes an approach for failure probability assessment based on Latinized partially stratified sampling and maximum entropy distribution with fractional moments.The spatial variability of geotechnical properties is represented by means of random fields and the Karhunen-Loève expansion.Then,failure probabilities are estimated employing maximum entropy distribution with fractional moments.The application of the proposed approach is examined with two examples:a case study of an undrained slope and a case study of a slope with cross-correlated random fields of strength parameters under a drained slope.The results show that the proposed approach has excellent accuracy and high efficiency,and it can be applied straightforwardly to similar geotechnical engineering problems.展开更多
Laser-induced fluorescence(LIF)spectroscopy is employed for plasma diagnosis,necessitating the utilization of deconvolution algorithms to isolate the Doppler effect from the raw spectral signal.However,direct deconvol...Laser-induced fluorescence(LIF)spectroscopy is employed for plasma diagnosis,necessitating the utilization of deconvolution algorithms to isolate the Doppler effect from the raw spectral signal.However,direct deconvolution becomes invalid in the presence of noise as it leads to infinite amplification of high-frequency noise components.To address this issue,we propose a deconvolution algorithm based on the maximum entropy principle.We validate the effectiveness of the proposed algorithm by utilizing simulated LIF spectra at various noise levels(signal-to-noise ratio,SNR=20–80 d B)and measured LIF spectra with Xe as the working fluid.In the typical measured spectrum(SNR=26.23 d B)experiment,compared with the Gaussian filter and the Richardson–Lucy(R-L)algorithm,the proposed algorithm demonstrates an increase in SNR of 1.39 d B and 4.66 d B,respectively,along with a reduction in the root-meansquare error(RMSE)of 35%and 64%,respectively.Additionally,there is a decrease in the spectral angle(SA)of 0.05 and 0.11,respectively.In the high-quality spectrum(SNR=43.96 d B)experiment,the results show that the running time of the proposed algorithm is reduced by about98%compared with the R-L iterative algorithm.Moreover,the maximum entropy algorithm avoids parameter optimization settings and is more suitable for automatic implementation.In conclusion,the proposed algorithm can accurately resolve Doppler spectrum details while effectively suppressing noise,thus highlighting its advantage in LIF spectral deconvolution applications.展开更多
In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold val...In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold value and the classification number is proposed based on the maximum entropy, and the self-adaptive criterion of the classification number is given. The algorithm can obtain thresholds and automatically decide the classification number. Experimental results show that the algorithm is effective.展开更多
A new method for estimating the n (50 or 100) -year return-period waveheight, namely, the extreme waveheight expected to occur in n years, is presented on the basis of the maximum entropy principle. The main p...A new method for estimating the n (50 or 100) -year return-period waveheight, namely, the extreme waveheight expected to occur in n years, is presented on the basis of the maximum entropy principle. The main points of the method are as follows: (1) based on the Hamiltonian principle, a maximum entropy probability density function for the extreme waveheight H, f(H)=αHγ e -βH4 is derived from a Lagrangian function subject to some necessary and rational constraints; (2) the parameters α, β, and γ in the function are expressed in terms of the mean , variance V= (H-)2 and bias B= (H-)3 ; and (3) with , V and B estimated from observed data, the n -year return-period wave height H n is computed in accordance with the formula 11-F(H n)=n , where F(H n) is defined as F(H n)=∫ H n 0f(H) d H. Examples of estimating the 50 and 100-year return period waveheights by the present method and by some currently used method from observed data acquired from two hydrographic stations are given. A comparison of the estimated results shows that the present method is superior to the others.展开更多
A new compound distribution model for extreme wave heights of typhoon-affected sea areas is proposed on the basis of the maximum-entropy principle. The new model is formed by nesting a discrete distribution in a conti...A new compound distribution model for extreme wave heights of typhoon-affected sea areas is proposed on the basis of the maximum-entropy principle. The new model is formed by nesting a discrete distribution in a continuous one, having eight parameters which can be determined in terms of observed data of typhoon occurrence-frequency and extreme wave heights by numerically solving two sets of equations derived in this paper. The model is examined by using it to predict the N-year return-period wave height at two hydrology stations in the Yellow Sea, and the predicted results are compared with those predicted by use of some other compound distribution models. Examinations and comparisons show that the model has some advantages for predicting the N-year return-period wave height in typhoon-affected sea areas.展开更多
This paper investigates the maximum entropy restoration of blurred binary image.In concerning with the binary property of image,a new maximum entropy restoration methodwith binary constraint is proposed.The properties...This paper investigates the maximum entropy restoration of blurred binary image.In concerning with the binary property of image,a new maximum entropy restoration methodwith binary constraint is proposed.The properties of existence and uniqueness of solution arediscussed.The problem of maximum of entropy with two constraints is solved and the corre-sponding algorithm is given.In this paper,the maximum bounded entropy principle is employedconcerning the prior knowledge of binary image,and the maximum bounded entropy restora-tion method with binary constraint is put forward.The proposes methods,Wiener filter(WF)restoration method and maximum entropy restoration method are compared.The experimen-tal results show that the maximum entropy restoration method and maximum bounded entropyrestoration method with binary constraint can improve the quality of restored image.展开更多
A crowdsourcing experiment in which viewers (the “crowd”) of a British Broadcasting Corporation (BBC) television show submitted estimates of the number of coins in a tumbler was shown in an antecedent paper (Part 1)...A crowdsourcing experiment in which viewers (the “crowd”) of a British Broadcasting Corporation (BBC) television show submitted estimates of the number of coins in a tumbler was shown in an antecedent paper (Part 1) to follow a log-normal distribution ∧(m,s2). The coin-estimation experiment is an archetype of a broad class of image analysis and object counting problems suitable for solution by crowdsourcing. The objective of the current paper (Part 2) is to determine the location and scale parameters (m,s) of ∧(m,s2) by both Bayesian and maximum likelihood (ML) methods and to compare the results. One outcome of the analysis is the resolution, by means of Jeffreys’ rule, of questions regarding the appropriate Bayesian prior. It is shown that Bayesian and ML analyses lead to the same expression for the location parameter, but different expressions for the scale parameter, which become identical in the limit of an infinite sample size. A second outcome of the analysis concerns use of the sample mean as the measure of information of the crowd in applications where the distribution of responses is not sought or known. In the coin-estimation experiment, the sample mean was found to differ widely from the mean number of coins calculated from ∧(m,s2). This discordance raises critical questions concerning whether, and under what conditions, the sample mean provides a reliable measure of the information of the crowd. This paper resolves that problem by use of the principle of maximum entropy (PME). The PME yields a set of equations for finding the most probable distribution consistent with given prior information and only that information. If there is no solution to the PME equations for a specified sample mean and sample variance, then the sample mean is an unreliable statistic, since no measure can be assigned to its uncertainty. Parts 1 and 2 together demonstrate that the information content of crowdsourcing resides in the distribution of responses (very often log-normal in form), which can be obtained empirically or by appropriate modeling.展开更多
In machine-vision-based systems for detecting foreign fibers, due to the background of the cotton layer has the absolute advantage in the whole image, while the foreign fiber only account for a very small part, and w...In machine-vision-based systems for detecting foreign fibers, due to the background of the cotton layer has the absolute advantage in the whole image, while the foreign fiber only account for a very small part, and what’s more, the brightness and contrast of the image are all poor. Using the traditional image segmentation method, the segmentation results are very poor. By adopting the maximum entropy and genetic algorithm, the maximum entropy function was used as the fitness function of genetic algorithm. Through continuous optimization, the optimal segmentation threshold is determined. Experimental results prove that the image segmentation of this paper not only fast and accurate, but also has strong adaptability.展开更多
Routine reliability index method, first order second moment (FOSM), may not ensure convergence of iteration when the performance function is strongly nonlinear. A modified method was proposed to calculate reliability ...Routine reliability index method, first order second moment (FOSM), may not ensure convergence of iteration when the performance function is strongly nonlinear. A modified method was proposed to calculate reliability index based on maximum entropy (MaxEnt) principle. To achieve this goal, the complicated iteration of first order second moment (FOSM) method was replaced by the calculation of entropy density function. Local convergence of Newton iteration method utilized to calculate entropy density function was proved, which ensured the convergence of iteration when calculating reliability index. To promote calculation efficiency, Newton down-hill algorithm was incorporated into calculating entropy density function and Monte Carlo simulations (MCS) were performed to assess the efficiency of the presented method. Two numerical examples were presented to verify the validation of the presented method. Moreover, the execution and advantages of the presented method were explained. From Example 1, after seven times iteration, the proposed method is capable of calculating the reliability index when the performance function is strongly nonlinear and at the same time the proposed method can preserve the calculation accuracy; From Example 2, the reliability indices calculated using the proposed method, FOSM and MCS are 3.823 9, 3.813 0 and 3.827 6, respectively, and the according iteration times are 5, 36 and 10 6 , which shows that the presented method can improve calculation accuracy without increasing computational cost for the performance function of which the reliability index can be calculated using first order second moment (FOSM) method.展开更多
Excellent results are obtained in structure analysis with jew phases of structure factors by the maximum-entropy method (MEM) for CaGaN PbCO3 and ReBe22 single crystals. The computation time and memory space are minim...Excellent results are obtained in structure analysis with jew phases of structure factors by the maximum-entropy method (MEM) for CaGaN PbCO3 and ReBe22 single crystals. The computation time and memory space are minimized by symmetry operations so that structure analysis by the MEM can be carried out with a personal computer.展开更多
A passive and multi-channel microwave sounder onboard the Chang'e-2 orbiter has successfully acquired microwave observations of the lunar surface and subsurface structure. Compared with the Chang'e-1 orbiter, the Ch...A passive and multi-channel microwave sounder onboard the Chang'e-2 orbiter has successfully acquired microwave observations of the lunar surface and subsurface structure. Compared with the Chang'e-1 orbiter, the Chang'e-2 orbiter obtained more accurate and comprehensive microwave brightness temperature data, which are helpful for further research. Since there is a close relationship between mi- crowave brightness temperature data and some related properties of the lunar regolith, such as the thickness, temperature and dielectric constant, precise and high resolution brightness temperature data are necessary for such research. However, through the detection mechanism of the microwave sounder, the brightness temperature data ac- quired from the microwave sounder are weighted by the antenna radiation pattern, so the data are the convolution of the antenna radiation pattern with the lunar brightness temperature. In order to obtain the real lunar brightness temperature, a deconvolution method is needed. The aim of this paper is to solve the problem associated with per- forming deconvolution of the lunar brightness temperature. In this study, we introduce the maximum entropy method (MEM) to process the brightness temperature data and achieve excellent results. The paper mainly includes the following aspects: first, we introduce the principle of the MEM; second, through a series of simulations, the MEM has been verified as an efficient deconvolution method; and third, the MEM is used to process the Chang'e-2 microwave data and the results are significant.展开更多
With the idea of maximum entropy function and penalty function methods, we transform the quadratic programming problem into an unconstrained differentiable optimization problem, discuss the interval extension of the m...With the idea of maximum entropy function and penalty function methods, we transform the quadratic programming problem into an unconstrained differentiable optimization problem, discuss the interval extension of the maximum entropy function, provide the region deletion test rules and design an interval maximum entropy algorithm for quadratic programming problem. The convergence of the method is proved and numerical results are presented. Both theoretical and numerical results show that the method is reliable and efficient.展开更多
Taking the Dapingzhang copper-polymetallic deposit in Yunnan Province, China as the research object, the maximum entropy model was used to extract the mining information, and the mineral resource prediction model was ...Taking the Dapingzhang copper-polymetallic deposit in Yunnan Province, China as the research object, the maximum entropy model was used to extract the mining information, and the mineral resource prediction model was established by using the exploration data of the deposit and related regions in this area, so as to determine the prospecting prospect area in the study area. In this paper, the Jacknife analysis module of maximum entropy model is used to quantitatively rank the importance of 39 geochemical element variables, and finally obtain the prospecting prospect map of the study area. The research results show that the Dapingzhang mining area has the potential to find hidden ore in the deep and surrounding areas, and the northern and southern ends and western sides of the rock ore control structural belt in the eastern region of the mining area have good prospecting prospects. The research results provide an important basis for the deployment of follow-up exploration work in the study area, and the maximum entropy model has a good application effect in mineral resources exploration.展开更多
The maximum entropy distribution, which consists of various recognized theoretical distributions, is a better curve to estimate the design thickness of sea ice. Method of moment and empirical curve fitting method are ...The maximum entropy distribution, which consists of various recognized theoretical distributions, is a better curve to estimate the design thickness of sea ice. Method of moment and empirical curve fitting method are common-used parameter estimation methods for maximum entropy distribution. In this study, we propose to use the particle swarm optimization method as a new parameter estimation method for the maximum entropy distribution, which has the advantage to avoid deviation introduced by simplifications made in other methods. We conducted a case study to fit the hindcasted thickness of the sea ice in the Liaodong Bay of Bohai Sea using these three parameter-estimation methods for the maximum entropy distribution. All methods implemented in this study pass the K-S tests at 0.05 significant level. In terms of the average sum of deviation squares, the empirical curve fitting method provides the best fit for the original data, while the method of moment provides the worst. Among all three methods, the particle swarm optimization method predicts the largest thickness of the sea ice for a same return period. As a result, we recommend using the particle swarm optimization method for the maximum entropy distribution for offshore structures mainly influenced by the sea ice in winter, but using the empirical curve fitting method to reduce the cost in the design of temporary and economic buildings.展开更多
The maximum entropy principle(MEP) is one of the first methods which have been used to predict droplet size and velocity distributions of liquid sprays. This method needs a mean droplets diameter as an input to predic...The maximum entropy principle(MEP) is one of the first methods which have been used to predict droplet size and velocity distributions of liquid sprays. This method needs a mean droplets diameter as an input to predict the droplet size distribution. This paper presents a new sub-model based on the deterministic aspects of liquid atomization process independent of the experimental data to provide the mean droplets diameter for using in the maximum entropy formulation(MEF). For this purpose, a theoretical model based on the approach of energy conservation law entitled energy-based model(EBM) is presented. Based on this approach, atomization occurs due to the kinetic energy loss. Prediction of the combined model(MEF/EBM) is in good agreement with the available experimental data. The energy-based model can be used as a fast and reliable enough model to obtain a good estimation of the mean droplets diameter of a spray and the combined model(MEF/EBM) can be used to well predict the droplet size distribution at the primary breakup.展开更多
A method which is especially suitable for microcomputer calculation of the true orientation distribution function (ODF) according to the maximum-entropy estimate is proposed for hexagonal system polycrystalline materi...A method which is especially suitable for microcomputer calculation of the true orientation distribution function (ODF) according to the maximum-entropy estimate is proposed for hexagonal system polycrystalline materials with physical symmetry.The resultant computational software system has been also designed and first carried out in a microcomputer PANAFACOM-U1200 being on line with the X-ray diffractometer D/max-3A.The simu- lated calculation shows that the method is concisely pragmatic and easily popularized,while the results obtained are trust worthy.展开更多
Efficient exploration in complex coordination tasks has been considered a challenging problem in multi-agent reinforcement learning(MARL). It is significantly more difficult for those tasks with latent variables that ...Efficient exploration in complex coordination tasks has been considered a challenging problem in multi-agent reinforcement learning(MARL). It is significantly more difficult for those tasks with latent variables that agents cannot directly observe. However, most of the existing latent variable discovery methods lack a clear representation of latent variables and an effective evaluation of the influence of latent variables on the agent. In this paper, we propose a new MARL algorithm based on the soft actor-critic method for complex continuous control tasks with confounders. It is called the multi-agent soft actor-critic with latent variable(MASAC-LV) algorithm, which uses variational inference theory to infer the compact latent variables representation space from a large amount of offline experience.Besides, we derive the counterfactual policy whose input has no latent variables and quantify the difference between the actual policy and the counterfactual policy via a distance function. This quantified difference is considered an intrinsic motivation that gives additional rewards based on how much the latent variable affects each agent. The proposed algorithm is evaluated on two collaboration tasks with confounders, and the experimental results demonstrate the effectiveness of MASAC-LV compared to other baseline algorithms.展开更多
以内燃机典型摩擦副缸套-活塞系统为研究对象,设计和搭建内燃机缸套-活塞系统状态监测试验台。针对传统最大熵方法分析润滑油中磨粒监测数据存在的缺点,提出改进的分数矩最大熵方法(Fractional Moment Maximum Entropy Method, FM-MEM)...以内燃机典型摩擦副缸套-活塞系统为研究对象,设计和搭建内燃机缸套-活塞系统状态监测试验台。针对传统最大熵方法分析润滑油中磨粒监测数据存在的缺点,提出改进的分数矩最大熵方法(Fractional Moment Maximum Entropy Method, FM-MEM),并结合食肉植物优化算法(Carnivorous Plant Algorithm, CPA)对关键参数进行寻优求解。对润滑油中磨粒监测数据进行阈值划分,实现内燃机健康状态评估,然后将理论与试验相结合,以在线磨粒监测为主,从润滑油磨粒、理化指标以及表面形貌3个方面对内燃机缸套-活塞系统的运行状态进行监测,分析低速工况下缸套-活塞系统各个时间段的磨损健康状态及磨粒含量变化趋势,通过内燃机整机的在线磨粒监测试验,证明该方法可实现对内燃机缸套-活塞系统的实时状态监测。展开更多
Experiments clarified that application of the maximum entropy method to calculate the RDF (radial distribution function)of the Ni-P amorphous alloy from fewer data of its X-ray diffraction data shows a higher resoluti...Experiments clarified that application of the maximum entropy method to calculate the RDF (radial distribution function)of the Ni-P amorphous alloy from fewer data of its X-ray diffraction data shows a higher resolution and good consistent with known results.It is be- lieved that this method is available for the analysis of amorphous structure.展开更多
基金funding support from the China Scholarship Council(CSC).
文摘Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering.The latter is particularly true for slope stability assessment,where the effects of uncertainty are synthesized in the so-called probability of failure.This probability quantifies the reliability of a slope and its numerical calculation is usually quite involved from a numerical viewpoint.In view of this issue,this paper proposes an approach for failure probability assessment based on Latinized partially stratified sampling and maximum entropy distribution with fractional moments.The spatial variability of geotechnical properties is represented by means of random fields and the Karhunen-Loève expansion.Then,failure probabilities are estimated employing maximum entropy distribution with fractional moments.The application of the proposed approach is examined with two examples:a case study of an undrained slope and a case study of a slope with cross-correlated random fields of strength parameters under a drained slope.The results show that the proposed approach has excellent accuracy and high efficiency,and it can be applied straightforwardly to similar geotechnical engineering problems.
文摘Laser-induced fluorescence(LIF)spectroscopy is employed for plasma diagnosis,necessitating the utilization of deconvolution algorithms to isolate the Doppler effect from the raw spectral signal.However,direct deconvolution becomes invalid in the presence of noise as it leads to infinite amplification of high-frequency noise components.To address this issue,we propose a deconvolution algorithm based on the maximum entropy principle.We validate the effectiveness of the proposed algorithm by utilizing simulated LIF spectra at various noise levels(signal-to-noise ratio,SNR=20–80 d B)and measured LIF spectra with Xe as the working fluid.In the typical measured spectrum(SNR=26.23 d B)experiment,compared with the Gaussian filter and the Richardson–Lucy(R-L)algorithm,the proposed algorithm demonstrates an increase in SNR of 1.39 d B and 4.66 d B,respectively,along with a reduction in the root-meansquare error(RMSE)of 35%and 64%,respectively.Additionally,there is a decrease in the spectral angle(SA)of 0.05 and 0.11,respectively.In the high-quality spectrum(SNR=43.96 d B)experiment,the results show that the running time of the proposed algorithm is reduced by about98%compared with the R-L iterative algorithm.Moreover,the maximum entropy algorithm avoids parameter optimization settings and is more suitable for automatic implementation.In conclusion,the proposed algorithm can accurately resolve Doppler spectrum details while effectively suppressing noise,thus highlighting its advantage in LIF spectral deconvolution applications.
文摘In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold value and the classification number is proposed based on the maximum entropy, and the self-adaptive criterion of the classification number is given. The algorithm can obtain thresholds and automatically decide the classification number. Experimental results show that the algorithm is effective.
基金ThisworkisfinanciallysupportedbythePh.D.FoundationoftheMinistryoftheEducationofChina (No .2 0 0 0 4 2 30 8)
文摘A new method for estimating the n (50 or 100) -year return-period waveheight, namely, the extreme waveheight expected to occur in n years, is presented on the basis of the maximum entropy principle. The main points of the method are as follows: (1) based on the Hamiltonian principle, a maximum entropy probability density function for the extreme waveheight H, f(H)=αHγ e -βH4 is derived from a Lagrangian function subject to some necessary and rational constraints; (2) the parameters α, β, and γ in the function are expressed in terms of the mean , variance V= (H-)2 and bias B= (H-)3 ; and (3) with , V and B estimated from observed data, the n -year return-period wave height H n is computed in accordance with the formula 11-F(H n)=n , where F(H n) is defined as F(H n)=∫ H n 0f(H) d H. Examples of estimating the 50 and 100-year return period waveheights by the present method and by some currently used method from observed data acquired from two hydrographic stations are given. A comparison of the estimated results shows that the present method is superior to the others.
基金supported by the Open Fund of the Key Laboratory of Research on Marine Hazards Forecasting (Grant No.LOMF1101)the Shanghai Typhoon Research Fund (Grant No. 2009ST05)the National Natural Science Foundation of China(Grant No. 40776006)
文摘A new compound distribution model for extreme wave heights of typhoon-affected sea areas is proposed on the basis of the maximum-entropy principle. The new model is formed by nesting a discrete distribution in a continuous one, having eight parameters which can be determined in terms of observed data of typhoon occurrence-frequency and extreme wave heights by numerically solving two sets of equations derived in this paper. The model is examined by using it to predict the N-year return-period wave height at two hydrology stations in the Yellow Sea, and the predicted results are compared with those predicted by use of some other compound distribution models. Examinations and comparisons show that the model has some advantages for predicting the N-year return-period wave height in typhoon-affected sea areas.
文摘This paper investigates the maximum entropy restoration of blurred binary image.In concerning with the binary property of image,a new maximum entropy restoration methodwith binary constraint is proposed.The properties of existence and uniqueness of solution arediscussed.The problem of maximum of entropy with two constraints is solved and the corre-sponding algorithm is given.In this paper,the maximum bounded entropy principle is employedconcerning the prior knowledge of binary image,and the maximum bounded entropy restora-tion method with binary constraint is put forward.The proposes methods,Wiener filter(WF)restoration method and maximum entropy restoration method are compared.The experimen-tal results show that the maximum entropy restoration method and maximum bounded entropyrestoration method with binary constraint can improve the quality of restored image.
文摘A crowdsourcing experiment in which viewers (the “crowd”) of a British Broadcasting Corporation (BBC) television show submitted estimates of the number of coins in a tumbler was shown in an antecedent paper (Part 1) to follow a log-normal distribution ∧(m,s2). The coin-estimation experiment is an archetype of a broad class of image analysis and object counting problems suitable for solution by crowdsourcing. The objective of the current paper (Part 2) is to determine the location and scale parameters (m,s) of ∧(m,s2) by both Bayesian and maximum likelihood (ML) methods and to compare the results. One outcome of the analysis is the resolution, by means of Jeffreys’ rule, of questions regarding the appropriate Bayesian prior. It is shown that Bayesian and ML analyses lead to the same expression for the location parameter, but different expressions for the scale parameter, which become identical in the limit of an infinite sample size. A second outcome of the analysis concerns use of the sample mean as the measure of information of the crowd in applications where the distribution of responses is not sought or known. In the coin-estimation experiment, the sample mean was found to differ widely from the mean number of coins calculated from ∧(m,s2). This discordance raises critical questions concerning whether, and under what conditions, the sample mean provides a reliable measure of the information of the crowd. This paper resolves that problem by use of the principle of maximum entropy (PME). The PME yields a set of equations for finding the most probable distribution consistent with given prior information and only that information. If there is no solution to the PME equations for a specified sample mean and sample variance, then the sample mean is an unreliable statistic, since no measure can be assigned to its uncertainty. Parts 1 and 2 together demonstrate that the information content of crowdsourcing resides in the distribution of responses (very often log-normal in form), which can be obtained empirically or by appropriate modeling.
文摘In machine-vision-based systems for detecting foreign fibers, due to the background of the cotton layer has the absolute advantage in the whole image, while the foreign fiber only account for a very small part, and what’s more, the brightness and contrast of the image are all poor. Using the traditional image segmentation method, the segmentation results are very poor. By adopting the maximum entropy and genetic algorithm, the maximum entropy function was used as the fitness function of genetic algorithm. Through continuous optimization, the optimal segmentation threshold is determined. Experimental results prove that the image segmentation of this paper not only fast and accurate, but also has strong adaptability.
基金Project(50978112) supported by the National Natural Science Foundation of China
文摘Routine reliability index method, first order second moment (FOSM), may not ensure convergence of iteration when the performance function is strongly nonlinear. A modified method was proposed to calculate reliability index based on maximum entropy (MaxEnt) principle. To achieve this goal, the complicated iteration of first order second moment (FOSM) method was replaced by the calculation of entropy density function. Local convergence of Newton iteration method utilized to calculate entropy density function was proved, which ensured the convergence of iteration when calculating reliability index. To promote calculation efficiency, Newton down-hill algorithm was incorporated into calculating entropy density function and Monte Carlo simulations (MCS) were performed to assess the efficiency of the presented method. Two numerical examples were presented to verify the validation of the presented method. Moreover, the execution and advantages of the presented method were explained. From Example 1, after seven times iteration, the proposed method is capable of calculating the reliability index when the performance function is strongly nonlinear and at the same time the proposed method can preserve the calculation accuracy; From Example 2, the reliability indices calculated using the proposed method, FOSM and MCS are 3.823 9, 3.813 0 and 3.827 6, respectively, and the according iteration times are 5, 36 and 10 6 , which shows that the presented method can improve calculation accuracy without increasing computational cost for the performance function of which the reliability index can be calculated using first order second moment (FOSM) method.
文摘Excellent results are obtained in structure analysis with jew phases of structure factors by the maximum-entropy method (MEM) for CaGaN PbCO3 and ReBe22 single crystals. The computation time and memory space are minimized by symmetry operations so that structure analysis by the MEM can be carried out with a personal computer.
基金Supported by the National Natural Science Foundation of China
文摘A passive and multi-channel microwave sounder onboard the Chang'e-2 orbiter has successfully acquired microwave observations of the lunar surface and subsurface structure. Compared with the Chang'e-1 orbiter, the Chang'e-2 orbiter obtained more accurate and comprehensive microwave brightness temperature data, which are helpful for further research. Since there is a close relationship between mi- crowave brightness temperature data and some related properties of the lunar regolith, such as the thickness, temperature and dielectric constant, precise and high resolution brightness temperature data are necessary for such research. However, through the detection mechanism of the microwave sounder, the brightness temperature data ac- quired from the microwave sounder are weighted by the antenna radiation pattern, so the data are the convolution of the antenna radiation pattern with the lunar brightness temperature. In order to obtain the real lunar brightness temperature, a deconvolution method is needed. The aim of this paper is to solve the problem associated with per- forming deconvolution of the lunar brightness temperature. In this study, we introduce the maximum entropy method (MEM) to process the brightness temperature data and achieve excellent results. The paper mainly includes the following aspects: first, we introduce the principle of the MEM; second, through a series of simulations, the MEM has been verified as an efficient deconvolution method; and third, the MEM is used to process the Chang'e-2 microwave data and the results are significant.
基金Supported by Science and Technology Foundation of China University of Mining & Technology
文摘With the idea of maximum entropy function and penalty function methods, we transform the quadratic programming problem into an unconstrained differentiable optimization problem, discuss the interval extension of the maximum entropy function, provide the region deletion test rules and design an interval maximum entropy algorithm for quadratic programming problem. The convergence of the method is proved and numerical results are presented. Both theoretical and numerical results show that the method is reliable and efficient.
文摘Taking the Dapingzhang copper-polymetallic deposit in Yunnan Province, China as the research object, the maximum entropy model was used to extract the mining information, and the mineral resource prediction model was established by using the exploration data of the deposit and related regions in this area, so as to determine the prospecting prospect area in the study area. In this paper, the Jacknife analysis module of maximum entropy model is used to quantitatively rank the importance of 39 geochemical element variables, and finally obtain the prospecting prospect map of the study area. The research results show that the Dapingzhang mining area has the potential to find hidden ore in the deep and surrounding areas, and the northern and southern ends and western sides of the rock ore control structural belt in the eastern region of the mining area have good prospecting prospects. The research results provide an important basis for the deployment of follow-up exploration work in the study area, and the maximum entropy model has a good application effect in mineral resources exploration.
基金supported by the National Natural Science Foundation of China (Nos. 51279186, 51479183, 51509227)the Shandong Province Natural Science Foundation, China (No. ZR2014EEQ030)the Fundamental Research Funds for the Central Universities (No. 201413003)
文摘The maximum entropy distribution, which consists of various recognized theoretical distributions, is a better curve to estimate the design thickness of sea ice. Method of moment and empirical curve fitting method are common-used parameter estimation methods for maximum entropy distribution. In this study, we propose to use the particle swarm optimization method as a new parameter estimation method for the maximum entropy distribution, which has the advantage to avoid deviation introduced by simplifications made in other methods. We conducted a case study to fit the hindcasted thickness of the sea ice in the Liaodong Bay of Bohai Sea using these three parameter-estimation methods for the maximum entropy distribution. All methods implemented in this study pass the K-S tests at 0.05 significant level. In terms of the average sum of deviation squares, the empirical curve fitting method provides the best fit for the original data, while the method of moment provides the worst. Among all three methods, the particle swarm optimization method predicts the largest thickness of the sea ice for a same return period. As a result, we recommend using the particle swarm optimization method for the maximum entropy distribution for offshore structures mainly influenced by the sea ice in winter, but using the empirical curve fitting method to reduce the cost in the design of temporary and economic buildings.
文摘The maximum entropy principle(MEP) is one of the first methods which have been used to predict droplet size and velocity distributions of liquid sprays. This method needs a mean droplets diameter as an input to predict the droplet size distribution. This paper presents a new sub-model based on the deterministic aspects of liquid atomization process independent of the experimental data to provide the mean droplets diameter for using in the maximum entropy formulation(MEF). For this purpose, a theoretical model based on the approach of energy conservation law entitled energy-based model(EBM) is presented. Based on this approach, atomization occurs due to the kinetic energy loss. Prediction of the combined model(MEF/EBM) is in good agreement with the available experimental data. The energy-based model can be used as a fast and reliable enough model to obtain a good estimation of the mean droplets diameter of a spray and the combined model(MEF/EBM) can be used to well predict the droplet size distribution at the primary breakup.
文摘A method which is especially suitable for microcomputer calculation of the true orientation distribution function (ODF) according to the maximum-entropy estimate is proposed for hexagonal system polycrystalline materials with physical symmetry.The resultant computational software system has been also designed and first carried out in a microcomputer PANAFACOM-U1200 being on line with the X-ray diffractometer D/max-3A.The simu- lated calculation shows that the method is concisely pragmatic and easily popularized,while the results obtained are trust worthy.
基金supported in part by the National Natural Science Foundation of China (62136008,62236002,61921004,62173251,62103104)the “Zhishan” Scholars Programs of Southeast Universitythe Fundamental Research Funds for the Central Universities (2242023K30034)。
文摘Efficient exploration in complex coordination tasks has been considered a challenging problem in multi-agent reinforcement learning(MARL). It is significantly more difficult for those tasks with latent variables that agents cannot directly observe. However, most of the existing latent variable discovery methods lack a clear representation of latent variables and an effective evaluation of the influence of latent variables on the agent. In this paper, we propose a new MARL algorithm based on the soft actor-critic method for complex continuous control tasks with confounders. It is called the multi-agent soft actor-critic with latent variable(MASAC-LV) algorithm, which uses variational inference theory to infer the compact latent variables representation space from a large amount of offline experience.Besides, we derive the counterfactual policy whose input has no latent variables and quantify the difference between the actual policy and the counterfactual policy via a distance function. This quantified difference is considered an intrinsic motivation that gives additional rewards based on how much the latent variable affects each agent. The proposed algorithm is evaluated on two collaboration tasks with confounders, and the experimental results demonstrate the effectiveness of MASAC-LV compared to other baseline algorithms.
文摘以内燃机典型摩擦副缸套-活塞系统为研究对象,设计和搭建内燃机缸套-活塞系统状态监测试验台。针对传统最大熵方法分析润滑油中磨粒监测数据存在的缺点,提出改进的分数矩最大熵方法(Fractional Moment Maximum Entropy Method, FM-MEM),并结合食肉植物优化算法(Carnivorous Plant Algorithm, CPA)对关键参数进行寻优求解。对润滑油中磨粒监测数据进行阈值划分,实现内燃机健康状态评估,然后将理论与试验相结合,以在线磨粒监测为主,从润滑油磨粒、理化指标以及表面形貌3个方面对内燃机缸套-活塞系统的运行状态进行监测,分析低速工况下缸套-活塞系统各个时间段的磨损健康状态及磨粒含量变化趋势,通过内燃机整机的在线磨粒监测试验,证明该方法可实现对内燃机缸套-活塞系统的实时状态监测。
文摘Experiments clarified that application of the maximum entropy method to calculate the RDF (radial distribution function)of the Ni-P amorphous alloy from fewer data of its X-ray diffraction data shows a higher resolution and good consistent with known results.It is be- lieved that this method is available for the analysis of amorphous structure.