Beamspace super-resolution methods for elevation estimation in multipath environment has attracted significant attention, especially the beamspace maximum likelihood(BML)algorithm. However, the difference beam is rare...Beamspace super-resolution methods for elevation estimation in multipath environment has attracted significant attention, especially the beamspace maximum likelihood(BML)algorithm. However, the difference beam is rarely used in superresolution methods, especially in low elevation estimation. The target airspace information in the difference beam is different from the target airspace information in the sum beam. And the use of difference beams does not significantly increase the complexity of the system and algorithms. Thus, this paper applies the difference beam to the beamformer to improve the elevation estimation performance of BML algorithm. And the direction and number of beams can be adjusted according to the actual needs. The theoretical target elevation angle root means square error(RMSE) and the computational complexity of the proposed algorithms are analyzed. Finally, computer simulations and real data processing results demonstrate the effectiveness of the proposed algorithms.展开更多
Maximum likelihood estimation(MLE)is an effective method for localizing radioactive sources in a given area.However,it requires an exhaustive search for parameter estimation,which is time-consuming.In this study,heuri...Maximum likelihood estimation(MLE)is an effective method for localizing radioactive sources in a given area.However,it requires an exhaustive search for parameter estimation,which is time-consuming.In this study,heuristic techniques were employed to search for radiation source parameters that provide the maximum likelihood by using a network of sensors.Hence,the time consumption of MLE would be effectively reduced.First,the radiation source was detected using the k-sigma method.Subsequently,the MLE was applied for parameter estimation using the readings and positions of the detectors that have detected the radiation source.A comparative study was performed in which the estimation accuracy and time consump-tion of the MLE were evaluated for traditional methods and heuristic techniques.The traditional MLE was performed via a grid search method using fixed and multiple resolutions.Additionally,four commonly used heuristic algorithms were applied:the firefly algorithm(FFA),particle swarm optimization(PSO),ant colony optimization(ACO),and artificial bee colony(ABC).The experiment was conducted using real data collected by the Low Scatter Irradiator facility at the Savannah River National Laboratory as part of the Intelligent Radiation Sensing System program.The comparative study showed that the estimation time was 3.27 s using fixed resolution MLE and 0.59 s using multi-resolution MLE.The time consumption for the heuristic-based MLE was 0.75,0.03,0.02,and 0.059 s for FFA,PSO,ACO,and ABC,respectively.The location estimation error was approximately 0.4 m using either the grid search-based MLE or the heuristic-based MLE.Hence,heuristic-based MLE can provide comparable estimation accuracy through a less time-consuming process than traditional MLE.展开更多
In this article, we consider a lifetime distribution, the Weibull-Logarithmic distri- bution introduced by [6]. We investigate some new statistical characterizations and properties. We develop the maximum likelihood i...In this article, we consider a lifetime distribution, the Weibull-Logarithmic distri- bution introduced by [6]. We investigate some new statistical characterizations and properties. We develop the maximum likelihood inference using EM algorithm. Asymptotic properties of the MLEs are obtained and extensive simulations are conducted to assess the performance of parameter estimation. A numerical example is used to illustrate the application.展开更多
The conformal array can make full use of the aperture,save space,meet the requirements of aerodynamics,and is sensitive to polarization information.It has broad application prospects in military,aerospace,and communic...The conformal array can make full use of the aperture,save space,meet the requirements of aerodynamics,and is sensitive to polarization information.It has broad application prospects in military,aerospace,and communication fields.The joint polarization and direction-of-arrival(DOA)estimation based on the conformal array and the theoretical analysis of its parameter estimation performance are the key factors to promote the engineering application of the conformal array.To solve these problems,this paper establishes the wave field signal model of the conformal array.Then,for the case of a single target,the cost function of the maximum likelihood(ML)estimator is rewritten with Rayleigh quotient from a problem of maximizing the ratio of quadratic forms into those of minimizing quadratic forms.On this basis,rapid parameter estimation is achieved with the idea of manifold separation technology(MST).Compared with the modified variable projection(MVP)algorithm,it reduces the computational complexity and improves the parameter estimation performance.Meanwhile,the MST is used to solve the partial derivative of the steering vector.Then,the theoretical performance of ML,the multiple signal classification(MUSIC)estimator and Cramer-Rao bound(CRB)based on the conformal array are derived respectively,which provides theoretical foundation for the engineering application of the conformal array.Finally,the simulation experiment verifies the effectiveness of the proposed method.展开更多
In this paper, a weighted maximum likelihood technique (WMLT) for the logistic regression model is presented. This method depended on a weight function that is continuously adaptable using Mahalanobis distances for pr...In this paper, a weighted maximum likelihood technique (WMLT) for the logistic regression model is presented. This method depended on a weight function that is continuously adaptable using Mahalanobis distances for predictor variables. Under the model, the asymptotic consistency of the suggested estimator is demonstrated and properties of finite-sample are also investigated via simulation. In simulation studies and real data sets, it is observed that the newly proposed technique demonstrated the greatest performance among all estimators compared.展开更多
A Bayesian approach using Markov chain Monte Carlo algorithms has been developed to analyze Smith’s discretized version of the discovery process model. It avoids the problems involved in the maximum likelihood method...A Bayesian approach using Markov chain Monte Carlo algorithms has been developed to analyze Smith’s discretized version of the discovery process model. It avoids the problems involved in the maximum likelihood method by effectively making use of the information from the prior distribution and that from the discovery sequence according to posterior probabilities. All statistical inferences about the parameters of the model and total resources can be quantified by drawing samples directly from the joint posterior distribution. In addition, statistical errors of the samples can be easily assessed and the convergence properties can be monitored during the sampling. Because the information contained in a discovery sequence is not enough to estimate all parameters, especially the number of fields, geologically justified prior information is crucial to the estimation. The Bayesian approach allows the analyst to specify his subjective estimates of the required parameters and his degree of uncertainty about the estimates in a clearly identified fashion throughout the analysis. As an example, this approach is applied to the same data of the North Sea on which Smith demonstrated his maximum likelihood method. For this case, the Bayesian approach has really improved the overly pessimistic results and downward bias of the maximum likelihood procedure.展开更多
In order to obtain the life information of the vacuum fluorescent display (VFD) in a short time, a model of constant stress accelerated life tests (CSALT) is established with its filament temperature increased, an...In order to obtain the life information of the vacuum fluorescent display (VFD) in a short time, a model of constant stress accelerated life tests (CSALT) is established with its filament temperature increased, and four constant stress tests are conducted. The Weibull function is applied to describe the life distribution of the VFD, and the maximum likelihood estimation (MLE) and its iterative flow chart are used to calculate the shape parameters and the scale parameters. Furthermore, the accelerated life equation is determined by the least square method, the Kolmogorov-Smirnov test is performed to verify whether the VFD life meets the Weibull distribution or not, and selfdeveloped software is employed to predict the average life and the reliable life. Statistical data analysis results demonstrate that the test plans are feasible and versatile, that the VFD life follows the Weibull distribution, and that the VFD accelerated model satisfies the linear Arrhenius equation. The proposed method and the estimated life information of the VFD can provide some significant guideline to its manufacturers and customers.展开更多
In order to detect whether the data conforms to the given model, it is necessary to diagnose the data in the statistical way. The diagnostic problem in generalized nonlinear models based on the maximum Lq-likelihood e...In order to detect whether the data conforms to the given model, it is necessary to diagnose the data in the statistical way. The diagnostic problem in generalized nonlinear models based on the maximum Lq-likelihood estimation is considered. Three diagnostic statistics are used to detect whether the outliers exist in the data set. Simulation results show that when the sample size is small, the values of diagnostic statistics based on the maximum Lq-likelihood estimation are greater than the values based on the maximum likelihood estimation. As the sample size increases, the difference between the values of the diagnostic statistics based on two estimation methods diminishes gradually. It means that the outliers can be distinguished easier through the maximum Lq-likelihood method than those through the maximum likelihood estimation method.展开更多
To estimate the spreading sequence of the direct sequence spread spectrum (DSSS) signal, a fast algorithm based on maximum likelihood function is proposed, and the theoretical derivation of the algorithm is provided. ...To estimate the spreading sequence of the direct sequence spread spectrum (DSSS) signal, a fast algorithm based on maximum likelihood function is proposed, and the theoretical derivation of the algorithm is provided. By simplifying the objective function of maximum likelihood estimation, the algorithm can realize sequence synchronization and sequence estimation via adaptive iteration and sliding window. Since it avoids the correlation matrix computation, the algorithm significantly reduces the storage requirement and the computation complexity. Simulations show that it is a fast convergent algorithm, and can perform well in low signal to noise ratio (SNR).展开更多
This paper deals with the problems of consistency and strong consistency of the maximum likelihood estimators of the mean and variance of the drift fractional Brownian motions observed at discrete time instants. Both ...This paper deals with the problems of consistency and strong consistency of the maximum likelihood estimators of the mean and variance of the drift fractional Brownian motions observed at discrete time instants. Both the central limit theorem and the Berry-Ess′een bounds for these estimators are obtained by using the Stein’s method via Malliavin calculus.展开更多
By taking the subsequence out of the input-output sequence of a system polluted by white noise, an independent observation sequence and its probability density are obtained and then a maximum likelihood estimation of ...By taking the subsequence out of the input-output sequence of a system polluted by white noise, an independent observation sequence and its probability density are obtained and then a maximum likelihood estimation of the identification parameters is given. In order to decrease the asymptotic error, a corrector of maximum likelihood (CML) estimation with its recursive algorithm is given. It has been proved that the corrector has smaller asymptotic error than the least square methods. A simulation example shows that the corrector of maximum likelihood estimation is of higher approximating precision to the true parameters than the least square methods.展开更多
A crowdsourcing experiment in which viewers (the “crowd”) of a British Broadcasting Corporation (BBC) television show submitted estimates of the number of coins in a tumbler was shown in an antecedent paper (Part 1)...A crowdsourcing experiment in which viewers (the “crowd”) of a British Broadcasting Corporation (BBC) television show submitted estimates of the number of coins in a tumbler was shown in an antecedent paper (Part 1) to follow a log-normal distribution ∧(m,s2). The coin-estimation experiment is an archetype of a broad class of image analysis and object counting problems suitable for solution by crowdsourcing. The objective of the current paper (Part 2) is to determine the location and scale parameters (m,s) of ∧(m,s2) by both Bayesian and maximum likelihood (ML) methods and to compare the results. One outcome of the analysis is the resolution, by means of Jeffreys’ rule, of questions regarding the appropriate Bayesian prior. It is shown that Bayesian and ML analyses lead to the same expression for the location parameter, but different expressions for the scale parameter, which become identical in the limit of an infinite sample size. A second outcome of the analysis concerns use of the sample mean as the measure of information of the crowd in applications where the distribution of responses is not sought or known. In the coin-estimation experiment, the sample mean was found to differ widely from the mean number of coins calculated from ∧(m,s2). This discordance raises critical questions concerning whether, and under what conditions, the sample mean provides a reliable measure of the information of the crowd. This paper resolves that problem by use of the principle of maximum entropy (PME). The PME yields a set of equations for finding the most probable distribution consistent with given prior information and only that information. If there is no solution to the PME equations for a specified sample mean and sample variance, then the sample mean is an unreliable statistic, since no measure can be assigned to its uncertainty. Parts 1 and 2 together demonstrate that the information content of crowdsourcing resides in the distribution of responses (very often log-normal in form), which can be obtained empirically or by appropriate modeling.展开更多
In the presence of multicollinearity in logistic regression, the variance of the Maximum Likelihood Estimator (MLE) becomes inflated. Siray et al. (2015) [1] proposed a restricted Liu estimator in logistic regression ...In the presence of multicollinearity in logistic regression, the variance of the Maximum Likelihood Estimator (MLE) becomes inflated. Siray et al. (2015) [1] proposed a restricted Liu estimator in logistic regression model with exact linear restrictions. However, there are some situations, where the linear restrictions are stochastic. In this paper, we propose a Stochastic Restricted Maximum Likelihood Estimator (SRMLE) for the logistic regression model with stochastic linear restrictions to overcome this issue. Moreover, a Monte Carlo simulation is conducted for comparing the performances of the MLE, Restricted Maximum Likelihood Estimator (RMLE), Ridge Type Logistic Estimator(LRE), Liu Type Logistic Estimator(LLE), and SRMLE for the logistic regression model by using Scalar Mean Squared Error (SMSE).展开更多
In this paper a method of aerodynamic parameter identification of vehicle, the maximum likelihood method, is introduced. The aerodynamic model of vehicle is identified and the basic equations using maximum likelihood ...In this paper a method of aerodynamic parameter identification of vehicle, the maximum likelihood method, is introduced. The aerodynamic model of vehicle is identified and the basic equations using maximum likelihood method are established. After that, the simulation data is identified to verify the correctness of the mathematic model and identification method. Last, the practical flight data is identified and analyzed.展开更多
Low elevation estimation,which has attracted wide attention due to the presence of specular multipath,is essential for tracking radars.Frequency agility not only has the advantage of strong anti-interference ability,b...Low elevation estimation,which has attracted wide attention due to the presence of specular multipath,is essential for tracking radars.Frequency agility not only has the advantage of strong anti-interference ability,but also can enhance the performance of tracking radars.A frequency-agile refined maximum likelihood(RML)algorithm based on optimal fusion is proposed.The algorithm constructs an optimization problem,which minimizes the mean square error(MSE)of angle estimation.Thereby,the optimal weight at different frequency points is obtained for fusing the angle estimation.Through theoretical analysis and simulation,the frequency-agile RML algorithm based on optimal fusion can improve the accuracy of angle estimation effectively.展开更多
As a widely used reconstruction algorithm in quantum state tomography, maximum likelihood estimation tends to assign a rank-deficient matrix, which decreases estimation accuracy for certain quantum states. Fortunately...As a widely used reconstruction algorithm in quantum state tomography, maximum likelihood estimation tends to assign a rank-deficient matrix, which decreases estimation accuracy for certain quantum states. Fortunately, hedged maximum likelihood estimation (HMLE) [Phys. Rev. Lett. 105 (2010)200504] was proposed to avoid this problem. Here we study more details about this proposal in the two-qubit case and further improve its performance. We ameliorate the HMLE method by updating the hedging function based on the purity of the estimated state. Both performances of HMLE and ameliorated HMLE are demonstrated by numerical simulation and experimental implementation on the Werner states of polarization-entangled photons.展开更多
The estimation of target parameters in MIMO radar signal processing is one of the most important research topics. An efficient implementation of the Maximum Likelihood estimator is presented in this paper to estimate ...The estimation of target parameters in MIMO radar signal processing is one of the most important research topics. An efficient implementation of the Maximum Likelihood estimator is presented in this paper to estimate the DOA (Direction of Arrival), initial velocity and acceleration of a maneuvering target in colocated MIMO radar. The target’s DOA is estimated in the first place, then a Maximum-Likelihood (ML) estimation based on peak search is applied to a two-dimensional grids providing estimation of initial velocity and acceleration. Simulations show that the MIMO radar has a better performance in DOA estimation than the phased array radar. By means of Monte Carlo simulations, the estimation error of initial velocity and acceleration on different SNRs are calculated. The results also suggest the effectiveness of this method.展开更多
This paper presents a closed-form robust phase correlation based algorithm for performing image registration to subpixel accuracy.The subpixel translational shift information is directly obtained from the phase of the...This paper presents a closed-form robust phase correlation based algorithm for performing image registration to subpixel accuracy.The subpixel translational shift information is directly obtained from the phase of the normalized cross power spectrum by using Maximum Likelihood Estimation(MLE).The proposed algorithm also has slighter time complexity.Experimental results show that the proposed algorithm yields superior registration precision on the Cramér-Rao Bound(CRB) in the presence of aliasing and noise.展开更多
This paper proposes to apply the genetic algorithm and the firefly algorithm to enhance the estimation of the direction of arrival (DOA) angle of electromagnetic signals of a smart antenna array. This estimation is es...This paper proposes to apply the genetic algorithm and the firefly algorithm to enhance the estimation of the direction of arrival (DOA) angle of electromagnetic signals of a smart antenna array. This estimation is essential for beamforming, where the antenna array radiating pattern is steered to provide faster and reliable data transmission with increased coverage. This work proposes using metaheuristics to improve a maximum likelihood DOA estimator for an antenna array arranged in a uniform cuboidal geometry. The DOA estimation performance of the proposed algorithm was compared to that of MUSIC on different two dimensions scenarios. The metaheuristic algorithms present better performance than the well-known MUSIC algorithm.展开更多
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs (B18039)。
文摘Beamspace super-resolution methods for elevation estimation in multipath environment has attracted significant attention, especially the beamspace maximum likelihood(BML)algorithm. However, the difference beam is rarely used in superresolution methods, especially in low elevation estimation. The target airspace information in the difference beam is different from the target airspace information in the sum beam. And the use of difference beams does not significantly increase the complexity of the system and algorithms. Thus, this paper applies the difference beam to the beamformer to improve the elevation estimation performance of BML algorithm. And the direction and number of beams can be adjusted according to the actual needs. The theoretical target elevation angle root means square error(RMSE) and the computational complexity of the proposed algorithms are analyzed. Finally, computer simulations and real data processing results demonstrate the effectiveness of the proposed algorithms.
文摘Maximum likelihood estimation(MLE)is an effective method for localizing radioactive sources in a given area.However,it requires an exhaustive search for parameter estimation,which is time-consuming.In this study,heuristic techniques were employed to search for radiation source parameters that provide the maximum likelihood by using a network of sensors.Hence,the time consumption of MLE would be effectively reduced.First,the radiation source was detected using the k-sigma method.Subsequently,the MLE was applied for parameter estimation using the readings and positions of the detectors that have detected the radiation source.A comparative study was performed in which the estimation accuracy and time consump-tion of the MLE were evaluated for traditional methods and heuristic techniques.The traditional MLE was performed via a grid search method using fixed and multiple resolutions.Additionally,four commonly used heuristic algorithms were applied:the firefly algorithm(FFA),particle swarm optimization(PSO),ant colony optimization(ACO),and artificial bee colony(ABC).The experiment was conducted using real data collected by the Low Scatter Irradiator facility at the Savannah River National Laboratory as part of the Intelligent Radiation Sensing System program.The comparative study showed that the estimation time was 3.27 s using fixed resolution MLE and 0.59 s using multi-resolution MLE.The time consumption for the heuristic-based MLE was 0.75,0.03,0.02,and 0.059 s for FFA,PSO,ACO,and ABC,respectively.The location estimation error was approximately 0.4 m using either the grid search-based MLE or the heuristic-based MLE.Hence,heuristic-based MLE can provide comparable estimation accuracy through a less time-consuming process than traditional MLE.
基金Supported by the program for the Fundamental Research Funds for the Central Universities(2014RC042,2015JBM109)
文摘In this article, we consider a lifetime distribution, the Weibull-Logarithmic distri- bution introduced by [6]. We investigate some new statistical characterizations and properties. We develop the maximum likelihood inference using EM algorithm. Asymptotic properties of the MLEs are obtained and extensive simulations are conducted to assess the performance of parameter estimation. A numerical example is used to illustrate the application.
基金the National Natural Science Foundation of China(62071144,61971159,61871149).
文摘The conformal array can make full use of the aperture,save space,meet the requirements of aerodynamics,and is sensitive to polarization information.It has broad application prospects in military,aerospace,and communication fields.The joint polarization and direction-of-arrival(DOA)estimation based on the conformal array and the theoretical analysis of its parameter estimation performance are the key factors to promote the engineering application of the conformal array.To solve these problems,this paper establishes the wave field signal model of the conformal array.Then,for the case of a single target,the cost function of the maximum likelihood(ML)estimator is rewritten with Rayleigh quotient from a problem of maximizing the ratio of quadratic forms into those of minimizing quadratic forms.On this basis,rapid parameter estimation is achieved with the idea of manifold separation technology(MST).Compared with the modified variable projection(MVP)algorithm,it reduces the computational complexity and improves the parameter estimation performance.Meanwhile,the MST is used to solve the partial derivative of the steering vector.Then,the theoretical performance of ML,the multiple signal classification(MUSIC)estimator and Cramer-Rao bound(CRB)based on the conformal array are derived respectively,which provides theoretical foundation for the engineering application of the conformal array.Finally,the simulation experiment verifies the effectiveness of the proposed method.
文摘In this paper, a weighted maximum likelihood technique (WMLT) for the logistic regression model is presented. This method depended on a weight function that is continuously adaptable using Mahalanobis distances for predictor variables. Under the model, the asymptotic consistency of the suggested estimator is demonstrated and properties of finite-sample are also investigated via simulation. In simulation studies and real data sets, it is observed that the newly proposed technique demonstrated the greatest performance among all estimators compared.
文摘A Bayesian approach using Markov chain Monte Carlo algorithms has been developed to analyze Smith’s discretized version of the discovery process model. It avoids the problems involved in the maximum likelihood method by effectively making use of the information from the prior distribution and that from the discovery sequence according to posterior probabilities. All statistical inferences about the parameters of the model and total resources can be quantified by drawing samples directly from the joint posterior distribution. In addition, statistical errors of the samples can be easily assessed and the convergence properties can be monitored during the sampling. Because the information contained in a discovery sequence is not enough to estimate all parameters, especially the number of fields, geologically justified prior information is crucial to the estimation. The Bayesian approach allows the analyst to specify his subjective estimates of the required parameters and his degree of uncertainty about the estimates in a clearly identified fashion throughout the analysis. As an example, this approach is applied to the same data of the North Sea on which Smith demonstrated his maximum likelihood method. For this case, the Bayesian approach has really improved the overly pessimistic results and downward bias of the maximum likelihood procedure.
基金Undergraduate Education High land Construction Project of Shanghaithe Key Course Construction of Shanghai Education Committee (No.20075302)the Key Technology R&D Program of Shanghai Municipality (No.08160510600)
文摘In order to obtain the life information of the vacuum fluorescent display (VFD) in a short time, a model of constant stress accelerated life tests (CSALT) is established with its filament temperature increased, and four constant stress tests are conducted. The Weibull function is applied to describe the life distribution of the VFD, and the maximum likelihood estimation (MLE) and its iterative flow chart are used to calculate the shape parameters and the scale parameters. Furthermore, the accelerated life equation is determined by the least square method, the Kolmogorov-Smirnov test is performed to verify whether the VFD life meets the Weibull distribution or not, and selfdeveloped software is employed to predict the average life and the reliable life. Statistical data analysis results demonstrate that the test plans are feasible and versatile, that the VFD life follows the Weibull distribution, and that the VFD accelerated model satisfies the linear Arrhenius equation. The proposed method and the estimated life information of the VFD can provide some significant guideline to its manufacturers and customers.
基金The National Natural Science Foundation of China(No.11171065)the Natural Science Foundation of Jiangsu Province(No.BK2011058)
文摘In order to detect whether the data conforms to the given model, it is necessary to diagnose the data in the statistical way. The diagnostic problem in generalized nonlinear models based on the maximum Lq-likelihood estimation is considered. Three diagnostic statistics are used to detect whether the outliers exist in the data set. Simulation results show that when the sample size is small, the values of diagnostic statistics based on the maximum Lq-likelihood estimation are greater than the values based on the maximum likelihood estimation. As the sample size increases, the difference between the values of the diagnostic statistics based on two estimation methods diminishes gradually. It means that the outliers can be distinguished easier through the maximum Lq-likelihood method than those through the maximum likelihood estimation method.
基金supported by Joint Foundation of and China Academy of Engineering Physical (10676006)
文摘To estimate the spreading sequence of the direct sequence spread spectrum (DSSS) signal, a fast algorithm based on maximum likelihood function is proposed, and the theoretical derivation of the algorithm is provided. By simplifying the objective function of maximum likelihood estimation, the algorithm can realize sequence synchronization and sequence estimation via adaptive iteration and sliding window. Since it avoids the correlation matrix computation, the algorithm significantly reduces the storage requirement and the computation complexity. Simulations show that it is a fast convergent algorithm, and can perform well in low signal to noise ratio (SNR).
基金supported by the National Science Foundations (DMS0504783 DMS0604207)National Science Fund for Distinguished Young Scholars of China (70825005)
文摘This paper deals with the problems of consistency and strong consistency of the maximum likelihood estimators of the mean and variance of the drift fractional Brownian motions observed at discrete time instants. Both the central limit theorem and the Berry-Ess′een bounds for these estimators are obtained by using the Stein’s method via Malliavin calculus.
文摘By taking the subsequence out of the input-output sequence of a system polluted by white noise, an independent observation sequence and its probability density are obtained and then a maximum likelihood estimation of the identification parameters is given. In order to decrease the asymptotic error, a corrector of maximum likelihood (CML) estimation with its recursive algorithm is given. It has been proved that the corrector has smaller asymptotic error than the least square methods. A simulation example shows that the corrector of maximum likelihood estimation is of higher approximating precision to the true parameters than the least square methods.
文摘A crowdsourcing experiment in which viewers (the “crowd”) of a British Broadcasting Corporation (BBC) television show submitted estimates of the number of coins in a tumbler was shown in an antecedent paper (Part 1) to follow a log-normal distribution ∧(m,s2). The coin-estimation experiment is an archetype of a broad class of image analysis and object counting problems suitable for solution by crowdsourcing. The objective of the current paper (Part 2) is to determine the location and scale parameters (m,s) of ∧(m,s2) by both Bayesian and maximum likelihood (ML) methods and to compare the results. One outcome of the analysis is the resolution, by means of Jeffreys’ rule, of questions regarding the appropriate Bayesian prior. It is shown that Bayesian and ML analyses lead to the same expression for the location parameter, but different expressions for the scale parameter, which become identical in the limit of an infinite sample size. A second outcome of the analysis concerns use of the sample mean as the measure of information of the crowd in applications where the distribution of responses is not sought or known. In the coin-estimation experiment, the sample mean was found to differ widely from the mean number of coins calculated from ∧(m,s2). This discordance raises critical questions concerning whether, and under what conditions, the sample mean provides a reliable measure of the information of the crowd. This paper resolves that problem by use of the principle of maximum entropy (PME). The PME yields a set of equations for finding the most probable distribution consistent with given prior information and only that information. If there is no solution to the PME equations for a specified sample mean and sample variance, then the sample mean is an unreliable statistic, since no measure can be assigned to its uncertainty. Parts 1 and 2 together demonstrate that the information content of crowdsourcing resides in the distribution of responses (very often log-normal in form), which can be obtained empirically or by appropriate modeling.
文摘In the presence of multicollinearity in logistic regression, the variance of the Maximum Likelihood Estimator (MLE) becomes inflated. Siray et al. (2015) [1] proposed a restricted Liu estimator in logistic regression model with exact linear restrictions. However, there are some situations, where the linear restrictions are stochastic. In this paper, we propose a Stochastic Restricted Maximum Likelihood Estimator (SRMLE) for the logistic regression model with stochastic linear restrictions to overcome this issue. Moreover, a Monte Carlo simulation is conducted for comparing the performances of the MLE, Restricted Maximum Likelihood Estimator (RMLE), Ridge Type Logistic Estimator(LRE), Liu Type Logistic Estimator(LLE), and SRMLE for the logistic regression model by using Scalar Mean Squared Error (SMSE).
文摘In this paper a method of aerodynamic parameter identification of vehicle, the maximum likelihood method, is introduced. The aerodynamic model of vehicle is identified and the basic equations using maximum likelihood method are established. After that, the simulation data is identified to verify the correctness of the mathematic model and identification method. Last, the practical flight data is identified and analyzed.
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs(the 111 Project)(B18039).
文摘Low elevation estimation,which has attracted wide attention due to the presence of specular multipath,is essential for tracking radars.Frequency agility not only has the advantage of strong anti-interference ability,but also can enhance the performance of tracking radars.A frequency-agile refined maximum likelihood(RML)algorithm based on optimal fusion is proposed.The algorithm constructs an optimization problem,which minimizes the mean square error(MSE)of angle estimation.Thereby,the optimal weight at different frequency points is obtained for fusing the angle estimation.Through theoretical analysis and simulation,the frequency-agile RML algorithm based on optimal fusion can improve the accuracy of angle estimation effectively.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11574291,61108009 and 61222504
文摘As a widely used reconstruction algorithm in quantum state tomography, maximum likelihood estimation tends to assign a rank-deficient matrix, which decreases estimation accuracy for certain quantum states. Fortunately, hedged maximum likelihood estimation (HMLE) [Phys. Rev. Lett. 105 (2010)200504] was proposed to avoid this problem. Here we study more details about this proposal in the two-qubit case and further improve its performance. We ameliorate the HMLE method by updating the hedging function based on the purity of the estimated state. Both performances of HMLE and ameliorated HMLE are demonstrated by numerical simulation and experimental implementation on the Werner states of polarization-entangled photons.
文摘The estimation of target parameters in MIMO radar signal processing is one of the most important research topics. An efficient implementation of the Maximum Likelihood estimator is presented in this paper to estimate the DOA (Direction of Arrival), initial velocity and acceleration of a maneuvering target in colocated MIMO radar. The target’s DOA is estimated in the first place, then a Maximum-Likelihood (ML) estimation based on peak search is applied to a two-dimensional grids providing estimation of initial velocity and acceleration. Simulations show that the MIMO radar has a better performance in DOA estimation than the phased array radar. By means of Monte Carlo simulations, the estimation error of initial velocity and acceleration on different SNRs are calculated. The results also suggest the effectiveness of this method.
文摘This paper presents a closed-form robust phase correlation based algorithm for performing image registration to subpixel accuracy.The subpixel translational shift information is directly obtained from the phase of the normalized cross power spectrum by using Maximum Likelihood Estimation(MLE).The proposed algorithm also has slighter time complexity.Experimental results show that the proposed algorithm yields superior registration precision on the Cramér-Rao Bound(CRB) in the presence of aliasing and noise.
文摘This paper proposes to apply the genetic algorithm and the firefly algorithm to enhance the estimation of the direction of arrival (DOA) angle of electromagnetic signals of a smart antenna array. This estimation is essential for beamforming, where the antenna array radiating pattern is steered to provide faster and reliable data transmission with increased coverage. This work proposes using metaheuristics to improve a maximum likelihood DOA estimator for an antenna array arranged in a uniform cuboidal geometry. The DOA estimation performance of the proposed algorithm was compared to that of MUSIC on different two dimensions scenarios. The metaheuristic algorithms present better performance than the well-known MUSIC algorithm.