The demand for high-data-rate underwater acoustic communications(UACs)in marine development is increasing;however,severe multipaths make demodulation a challenge.The decision feedback equalizer(DFE)is one of the most ...The demand for high-data-rate underwater acoustic communications(UACs)in marine development is increasing;however,severe multipaths make demodulation a challenge.The decision feedback equalizer(DFE)is one of the most popular equalizers in UAC;however,it is not the optimal algorithm.Although maximum likelihood sequence estimation(MLSE)is the optimal algorithm,its complexity increases exponentially with the number of channel taps,making it challenging to apply to UAC.Therefore,this paper proposes a complexity-reduced MLSE to improve the bit error rate(BER)performance in multipath channels.In the proposed algorithm,the original channel is first shortened using a channel-shortening method,and several dominant channel taps are selected for MLSE.Subsequently,sphere decoding(SD)is performed in the following MLSE.Iterations are applied to eliminate inter-symbol interference caused by weak channel taps.The simulation and sea experiment demonstrate the superiority of the proposed algorithm.The simulation results show that channel shortening combined with SD can drastically reduce computational complexity,and iterative SD performs better than DFE based on recursive least squares(RLS-DFE),DFE based on improved proportionate normalized least mean squares(IPNLMS-DFE),and channel estimation-based DFE(CE-DFE).Moreover,the sea experimental results at Zhairuoshan Island in Zhoushan show that the proposed receiver scheme has improved BER performance over RLSDFE,IPNLMS-DFE,and CE-DFE.Compared with the RLS-DFE,the BER,after five iterations,is reduced from 0.0076 to 0.0037 in the 8–12 k Hz band and from 0.1516 to 0.1145 in the 13–17 k Hz band at a distance of 2000 m.Thus,the proposed algorithm makes it possible to apply MLSE in UAC in practical scenarios.展开更多
We propose a trellis-compressed maximum likelihood sequence estimation(TC-MLSE)-assisted sliding-block decision feedback equalizer(DFE)to suppress the error propagation resulting from the DFE in high-speed systems.We ...We propose a trellis-compressed maximum likelihood sequence estimation(TC-MLSE)-assisted sliding-block decision feedback equalizer(DFE)to suppress the error propagation resulting from the DFE in high-speed systems.We use an out-ofrange detector to detect the end of burst errors from the DFE and activate the optional TC-MLSE to correct burst errors.We conduct experiments to transmit a 201-Gbit/s PAM-8 signal.The results show that the proposed method achieves a bit error rate of 3.65×10^(-3),which is close to that of MLSE.The optional MLSE is only activated when needed and processes 11.4%of the total symbols.Moreover,the proposed method compresses the maximum length of burst errors from 19 to 5.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos. 62101489, 62171405 and 62225114.
文摘The demand for high-data-rate underwater acoustic communications(UACs)in marine development is increasing;however,severe multipaths make demodulation a challenge.The decision feedback equalizer(DFE)is one of the most popular equalizers in UAC;however,it is not the optimal algorithm.Although maximum likelihood sequence estimation(MLSE)is the optimal algorithm,its complexity increases exponentially with the number of channel taps,making it challenging to apply to UAC.Therefore,this paper proposes a complexity-reduced MLSE to improve the bit error rate(BER)performance in multipath channels.In the proposed algorithm,the original channel is first shortened using a channel-shortening method,and several dominant channel taps are selected for MLSE.Subsequently,sphere decoding(SD)is performed in the following MLSE.Iterations are applied to eliminate inter-symbol interference caused by weak channel taps.The simulation and sea experiment demonstrate the superiority of the proposed algorithm.The simulation results show that channel shortening combined with SD can drastically reduce computational complexity,and iterative SD performs better than DFE based on recursive least squares(RLS-DFE),DFE based on improved proportionate normalized least mean squares(IPNLMS-DFE),and channel estimation-based DFE(CE-DFE).Moreover,the sea experimental results at Zhairuoshan Island in Zhoushan show that the proposed receiver scheme has improved BER performance over RLSDFE,IPNLMS-DFE,and CE-DFE.Compared with the RLS-DFE,the BER,after five iterations,is reduced from 0.0076 to 0.0037 in the 8–12 k Hz band and from 0.1516 to 0.1145 in the 13–17 k Hz band at a distance of 2000 m.Thus,the proposed algorithm makes it possible to apply MLSE in UAC in practical scenarios.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(Nos.62301128,61871082,and 62111530150)the Open Fund of IPOC(BUPT)(No.IPOC2020A011)+1 种基金the STCSM(No.SKLSFO2021-01)the Fundamental Research Funds for the Central Universities(Nos.ZYGX2020ZB043 and ZYGX2019J008).
文摘We propose a trellis-compressed maximum likelihood sequence estimation(TC-MLSE)-assisted sliding-block decision feedback equalizer(DFE)to suppress the error propagation resulting from the DFE in high-speed systems.We use an out-ofrange detector to detect the end of burst errors from the DFE and activate the optional TC-MLSE to correct burst errors.We conduct experiments to transmit a 201-Gbit/s PAM-8 signal.The results show that the proposed method achieves a bit error rate of 3.65×10^(-3),which is close to that of MLSE.The optional MLSE is only activated when needed and processes 11.4%of the total symbols.Moreover,the proposed method compresses the maximum length of burst errors from 19 to 5.